• Title/Summary/Keyword: poly(acrylonitrile)

Search Result 110, Processing Time 0.025 seconds

Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends (아크릴로니트릴-부타디엔-스티렌 공중합체와 폴리유산과의 블렌드에 대한 기계적 물성 및 모폴로지)

  • Lee, Yun Kyun;Kim, Ji Mun;Kim, Woo Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.438-442
    • /
    • 2011
  • Mechanical and morphological properties of poly(acrylonitrile-butadiene-styrene) (ABS) and poly(lactic acid) (PLA) blends containing compatibilizers were investigated. Poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA) were used as compatibilizers. Mechanical properties such as tensile, flexural and impact strengths of ABS/PLA (80/20, wt%) blends were found to be increased when the SAN-g-MAH, EOR-MAH and EGMA were used. The maximum values for mechanical properties of the ABS/PLA (80/20) blend were observed when SAN-g-MAH was used as a compatibilizer at the concentration of 3 phr. From morphological studies of the ABS/PLA (80/20) blends, PLA droplet size was decreased by the addition of the compatibilizers used in this study. From the results of mechanical and morphological properties of the ABS/PLA (80/20) blends, SAN-g-MAH (3 phr) was found to be the most effective compatibilizer among the compatibilizers used in this study.

Study on The Thermal Properties of Poly(methyl methacrylate) and Poly($\alpha$-methylstyrene-co-acrylonitrile) Mix tures (Poly(methyl methacrylate)와 Poly($\alpha$-methylstyrene-co-acrylonitrile) 혼합물의 열적특성에 관한 연구)

  • Moon, Deog-Ju;Kim, Byung-Chul;Kim, Dong-Keun;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.4
    • /
    • pp.289-298
    • /
    • 1988
  • The thermal degradation of poly(methyl methacrylate)(PMMA) and poly($\alpha$-methylstyrene-co-acrylonitrile)(SAN) mixtures were carried out using the thermogravimetry(TG) and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 20 to $500^{\circ}C$. The value of activation energies of thermal degradation determined by TG and DSC in the various PMMA/SAN mixtures were 34-54 kcal/mol in the stream of nitrogen. The value of activation energy of SAN 60% mixture were appeared high in comparison with addition rule. PMMA/SAN mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Kinetic Study on the Thermal Degradation of Poly(Methyl Methacrylate) and Poly(Acrylonitrile Butadiene Styrene) Mixtures (Poly(methyl methacrylate)와 Poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구)

  • Moon, Deok-Ju;Kim, Dong-Keun;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • The thermal degradation of Poly(methyl methacrylate) (PMMA) and poly(acrylonitrile butadiene styrene)(ABS) terpolymer as well as their mixtures were carried out using the thermogravimetry and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 200 to $300^{\circ}C$ The values of activation energies of thermal degradation determined by TG and DSC in the various PMMA/ABS mixtures were $34{\sim}58Kcal/mol,\;35{\sim}54Kcal/mol$ in the stream of nitrogen. The values of activation energy of ABS20% mixture was appeared high in camparison with addition rule. According to increasing the composition of ABS, the temperatures of glass transition and initial decomposition temperature were increased. PMMA/ABS mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Enhanced Charge Transfer Through Polypyrrole Electropolymerized on Poly(acrylonitrile-co-butadiene)/Pt Electrodes

  • Chae, Won-Seok;Moon, Jung-Nim;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.603-610
    • /
    • 1995
  • The charge transfer rate in polypyrrole(PPy) electropolymerized within poly(acrylonitrile-co-butadiene)(PAB) was compared with that in PPy deposited Pt electrodes by using cyclic voltammetry, chronoamperometry, and chronopotentiometry in acetonitrile. For both electrodes anodic and cathodic peak currents were proportional to scan rates below 100 mV/sec, but to square root of scan rates beyond 200 mV/sec. The apparent diffusion coefficient of $ClO{_4}^-$ in the PPy/PAB composite is estimated to be 1.6 times larger than that in PPy. The PPy films composited within PAB layer showed higher anodic and cathodic currents and possessed faster charging-discharging process and larger capacity.

  • PDF

Pervaporation Separation Characteristics for Water-Ethanol Mixtures Using Porous Hollow Fiber PVA Composite Membranes (미세 다공성 중공사 PVA복합막을 이용한 에탄올 수용액의 투과증발분리 특성)

  • Kim, Ji Seon;Park, Hun Whee;Seo, Chang Hee;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.360-366
    • /
    • 2013
  • The Poly (vinylidene fluoride) and poly (acrylonitrile) (PAN) hollow fiber composite membranes coated with poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) as the crosslinkig agent are prepared. The resulting membranes were characterized for aqueous 90 wt% ethanol solution by pervaporation techniques in terms of the permeability and separation factor. In general, as both the crsslinking reaction temperature and the crosslinking agent concentration increase, the permeability decrease while the separation factor tends to increase. And also the permeability increased and the separation factor decreased as the feed temperature increased. Typically, the permeability $502g/m^2hr$ at the feed temperature $70^{\circ}C$ was obtained for PVDF hollow fiber membrane prepared with the crosslinking agent PAA 3 wt% at the reaction temperature $60^{\circ}C$ whereas the separation factor 218 was shown for the membrane reacted with PAA 11 wt% and at $100^{\circ}C$ for the feed temperature $50^{\circ}C$.

Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte (Poly(acrylonitrile) 부직포 분리막에 코팅된 하이드로겔 고분자 전해질을 포함하는 활성탄 수퍼커패시터 특성)

  • Latifatu, Mohammed;Ko, Jang Myoun;Lee, Young-Gi;Kim, Kwang Man;Jo, Jeongdai;Jang, Yunseok;Yoo, Jung Joon;Kim, Jong Huy
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.550-555
    • /
    • 2013
  • A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity ($2.9{\times}10^{-2}Scm^{-1}$) than that ($3.6{\times}10^{-2}Scm^{-1}$) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than $27Fg^{-1}$ at $1000mVs^{-1}$ and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.

One-Pot Synthesis of Clay-dispersed Poly(styrene-co-acrylonitrile) Copolymer Nanocomposite using Poly($\varepsilon$-caprolactone) as a Compatibilizer

  • Ko, Moon-Bae
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of three components, i.e. poly (styrene co-acrylonitrile) copolymer (SAN), poly ($\xi$-caprolactone ) (PCL), and an organophilic clay(Cloisite(R) 30A). In the present study, poly($\xi$-caprolactone) was added in the mixtures in order to facilitate the intercalation of SAN into the gallery of silicate layers, and the molecular weight effects of PCL on the dispersion of silicate layers were compared by changing the amount of added PCL. The degree of dispersion of 10-$\AA$-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that PCL added in the mixture facilitate the intercalation of SAN copolymers into the galleries of silicate layers modified with an organic intercalant, resulting in the better dispersion of clay. It was, also, observed that the processing temperature influences the degree of clay dispersion.

  • PDF

Synthesis and Characterization of Thermo-responsive Poly(N-isopropylacrylamide) via Hydrolysis and Amidation of Poly(acrylonitrile) (폴리아크릴로니트릴의 가수분해와 아미드화에 의한 열감응성 폴리(N-이소프로필아크릴아미드)의 합성과 특성분석)

  • Lee, Hee Dong;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.784-793
    • /
    • 2013
  • A two-step method for obtaining poly(N-isopropylacrylamide) (PNIPAAm) from poly(acrylonitrile) (PAN) was investigated in order to find a feasibility of imparting thermo-responsive property onto textile fiber materials. PAN was converted to poly(acrylic acid) (PAA) by hydrolysis at a first-step, and then PAA was converted to PNIPAAm at a second step via an amidation reaction of PAA with isopropylamine (IPA) in DMF medium using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as catalysts. High content of carboxylic groups at the first step was obtained by the successive alkaline and acid hydrolysis of PAN. The degree of conversion of PAA to PNIPAAm at the second step was dependent on the amount of catalysts EDC and NHS. PNIPAAm converted from PAA through amidation reaction showed a lower critical solution temperature (LCST) behavior when the conversion was higher than about 53%.

Interaction of Antibiotic with PAN and Cationic-Dyeable PET Fibers in Development of Infection Resistant Biomedical Materials

  • Choi Hyung-Min
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Interaction of a representative antibiotic, doxycycline(Doxy), with commercial poly(acrylonitrile) (PAN) and cationic-dyeable poly(ethylene terephthalate)(PET) fiber was studied in development of infection resistant biomedical materials. Regular PET was also employed for a comparison purpose. Their interactions were investigated at different treatment temperatures, times, and pHs. Fibers were also hydrolyzed by 1% NaOH for 1 or 2 hours at $85^{\circ}C\;and\;100{\circ}C$ to study effect of hydrolysis on antibiotic sorption. Infection-resistant characteristics of the substrates were evaluated by zone of inhibition (ZOI) test. Results revealed that a significant chemical change occurred in PAN and cationic-dyeable PET due to hydrolysis. Additional functional groups obtained by hydrolysis not only enhanced sorption of the antibiotics but also provided greater ZOI values, indicating substantial improvement in sustained infection resistance properties.

Preparation of Poly (acrylonitrile)/Poly (pyrrole) Composite and Its Mechanical Properties (Poly(acrylonitrile)/Poly(pyrrole) 복합체의 제조 및 기계적 성질)

  • Park, Yun-Heum;Lee, Min-Koo;Kim, Yong-Kweon
    • Textile Coloration and Finishing
    • /
    • v.2 no.2
    • /
    • pp.7-13
    • /
    • 1990
  • The polyacrylonitrile (PAN)/polypyrrole (PPy) composite films have been prepaxed by exposing the PAN films containing oxidizing agent such as ferric chloride or cupric chloride to pyrrole vapor. The formation of PPy in PAN was confirmed by means of IR spectroscopy and scanning electron microscopy and the X-ray differaction study showed the amorphous structure of PPy. The breaking strength of PAN/PPy composite films was 3-5 times lower but the breaking elongation of them was 4-5 times higher than that of PAN film.

  • PDF