Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.5.550

Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte  

Latifatu, Mohammed (Department of Chemical and Biological Engineering, Hanbat National University)
Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
Lee, Young-Gi (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
Kim, Kwang Man (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
Jo, Jeongdai (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
Jang, Yunseok (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
Yoo, Jung Joon (Department of Printed Electronics, Korea Institute of Machinery & Materials)
Kim, Jong Huy (Department of Printed Electronics, Korea Institute of Machinery & Materials)
Publication Information
Korean Chemical Engineering Research / v.51, no.5, 2013 , pp. 550-555 More about this Journal
Abstract
A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity ($2.9{\times}10^{-2}Scm^{-1}$) than that ($3.6{\times}10^{-2}Scm^{-1}$) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than $27Fg^{-1}$ at $1000mVs^{-1}$ and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.
Keywords
Poly(acrylonitrile); Potassium Poly(acrylate); Supercapacitor; Cyclic Voltammetry; Specific Capacitance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, S.-G., Yim, J.-B., Kim, K.-M., Lee, Y.-W., Kim, M.-S. and Kang, A.-S., "Performance of Electric Double Layer Capacitor of Rice Hull Activated Carbon Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 39(4), 424-430(2001).
2 Kim, J., Kwan, Y., Lee, J. K. and Choi, H.-S., "Influence of oxygen-/Nitrogen-Containing Functional Groups on the Performance of Electrical Double-Layer Capacitor," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 50(6), 1043-1048(2012).   과학기술학회마을   DOI   ScienceOn
3 Cho, W.-J., Yeom, C. G., Kim, B. C., Kim, K. M., Ko, J. M. and Yu, K.-H., "Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts," Electrochim. Acta, 89, 807-813(2013).   DOI   ScienceOn
4 Won, J. H., Kim, Y. J., Lee, Y.-G., Kim, K. M., Kim, J. H. and Ko, J. M., "Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them," J. Korean Electrochem. Soc., 16(2), 91-97(2013).   과학기술학회마을   DOI   ScienceOn
5 Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. and Takasu, Y., "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance," J. Phys. Chem. B, 109(15), 7330-7338(2005).   DOI   ScienceOn
6 Hao, J., Lei, G., Li, Z., Wu, L., Xiao, Q. and Wang, L., "A Novel Polyethylene Terephthalate Nonwoven Separator Based on Electrospinning Technique for Lithium Ion Battery," J. Memb. Sci., 428, 11-16(2013).   DOI   ScienceOn
7 Huang, B., Wang, Z., Chen, L., Xue, R. and Wang, F., "The Mechanism of Lithium Ion Transport in Polyacrylonitrile-Based Polymer Electrolytes," Solid State Ion., 91(3-4), 279-284(1996).   DOI   ScienceOn
8 Croce, F., Brown, S. D., Greenbaum, S. G., Slane, S. M. and Salomon, M., "Lithium-7 NMR and Ionic Conductivity Studies of Gel Electrolytes Based on Poly(acrylonitrile)," Chem. Mater., 5(9), 1268-1272(1993).   DOI   ScienceOn
9 Yang, C. R., Perng, J. T., Wang, Y. Y. and Wan, C. C., "Conductive Behaviour of Lithium Ions in Polyacrylonitrile," J. Power Sources, 62(1), 89-93(1996).   DOI   ScienceOn
10 Huang, B., Wang, Z., Li, G., Huang, H., Xue, R., Chen, L. and Wang, F., "Lithium Ion Conduction in Polymer Electrolytes Based on PAN," Solid State Ion., 85(1-4), 79-84(1996).   DOI   ScienceOn
11 Wang, Z., Huang, B., Xue, R., Huang, X. and Chen, L., "Spectroscopic Investigation of Interactions among components and Ion Transport Mechanism in Polyacrylonitrile Based Electrolytes," Solid State Ion., 121(1-4), 141-156(1999).   DOI   ScienceOn
12 Chen-Yang, Y. W., Chen, H. C., Lin, F. J. and Chen, C. C., "Polyacrrylonitrile Electrolytes 1. A Novel High-Conductivity Composite Polymer Electrolyte Based on PAN, $LiClO_4$ and a-$Al_2O_3$," Solid State Ion., 150(3-4), 327-335(2002).   DOI   ScienceOn
13 Min, H.-S., Ko, J. M. and Kim, D.-W., "Preparation and Characterization of Porous Polyacrylonitrile Membranes for Lithium-ion Polymer Batteries," J. Power Sources, 119-121, 469-472(2003).   DOI   ScienceOn
14 Raghavan, P., Manuel, J., Zhao, X., Kim, D.-S., Ahn, J.-H. and Nah, C., "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries," J. Power Sources, 196(16), 6742-6749(2011).   DOI   ScienceOn
15 Zhang, S. S., "A Review on the Separators of Liquid Electrolyte Li-ion Batteries," J. Power Sources, 164(1), 351-364(2007).   DOI   ScienceOn
16 Nam, H.-S., Wu, N.-L., Lee, K.-T., Kim, K. M., Yeom, C. G., Hepowit, L. R., Ko, J. M. and Kim, J.-D., "Electrochemical Capacitances of a Nanowire-Structured $MnO_2$ in Polyacrylate-Based Gel Electrolytes," J. Electrochem. Soc., 159(6), A899-A903(2012).   DOI   ScienceOn
17 Croce, F., Focarete, M. L., Hassoun, J., Meschini, I. and Scrosati, B., "A Safe, High-Rate and High-Energy Polymer Lithium-ion Battery Based on Gelled Membranes Prepared by Electrospinning," Energy Environ. Sci., 4(3), 921-927(2011).   DOI   ScienceOn
18 Lee, K.-T. and Wu, N.-L., "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte," J. Power Sources, 179(1), 430-434(2008).   DOI   ScienceOn
19 Lee, K.-T., Lee, J.-F. and Wu, N.-L., "Electrochemical Characterizations on $MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co-Polyacrylamide Gel Polymer Electrolytes," Electrochim. Acta, 54(26), 6148-6153(2009).   DOI   ScienceOn
20 Carol, P., Ramakrishnan, P., John, B. and Cheruvally, G., "Preparation and Characterization of Electrospun Poly(acrylonitrile) Fibrous Membrane Based Gel Polymer Electrolytes for Lithiumion Batteries," J. Power Sources, 196(23), 10156-10162(2011).   DOI   ScienceOn
21 Cho, T. H., Sakai, T., Tanase, S., Kimura, K., Kondo, Y., Tarao, T. and Tanaka, M., "Electrochemical Performances of Polyacrylonitrile Nanofiber-Based Nonwoven Separator for Lithium-ion Battery," Electrochem. Solid-State Lett., 10(7), A159-A162(2007).   DOI   ScienceOn
22 Xiao, Q., Wang, X., Li, W., Li, Z., Zhang, T. and Zhang, H., "Macroporous Polymer Electrolytes Based on PVDF/PEO-b- PMMA Block Copolymer Blends for Rechargeable Lithium Ion Battery," J. Memb. Sci., 334(1-2), 117-122(2009).   DOI   ScienceOn
23 Rajendran, S., Prabhu, M. R. and Rani, M. U., "Ionic Conduction in Poly(vinyl chloride)/Poly(ethyl methacrylate)-Based Polymer Blend Electrolytes Complexed with Different Lithium Salts," J. Power Sources, 180(2), 880-883(2008).   DOI   ScienceOn
24 Yang, C., Jia, Z., Guan, Z. and Wang, L., "Polyvinylidene Fluoride Membrane by novel Electrospinning System for Separator of Liion Batteries," J. Power Sources, 189(1), 716-720(2009).   DOI   ScienceOn
25 Song, J. Y., Wang, Y. Y. and Wan, C. C., "Review of Gel-Type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77(2), 183-197(1999).   DOI   ScienceOn
26 Kumar, Y., Hashmi, S. A. and Pandey, G. P., "Lithium Ion Transport and Ion-Polymer Interaction in PEO Based Polymer Electrolyte Plasticized with Ionic Liquid," Solid State Ion., 201(1), 73-80(2011).   DOI   ScienceOn
27 Raghavan, P., Choi, J.-W., Ahn, J.-H., Cheruvally, G., Chauhan, G. S., Ahn, H.-J. and Nah, C., "Novel Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) In-Situ $SiO_2$ Composite Membrane-Based Polymer Electrolyte for Lithium Batteries," J. Power Sources, 184(2), 437-443(2008).   DOI   ScienceOn
28 Gopalan, A. I., Santhosh, P., Manesh, K. M., Nho, J. H., Kim, S. H., Hwang, C.-G. and Lee, K.-P., "Development of Electrospun PVdF-PAN Membrane-Based Polymer Electrolytes for Lithium Batteries," J. Memb. Sci., 325(2), 683-690(2008).   DOI   ScienceOn
29 Choi, E. S. and Lee, S.-Y., "Particle Size-Dependent, Tunable Porous Structure of a $SiO_2$/Poly(vinylidene fluoride-hexafluoropropylene)-Coated Poly(ethylene terephthalate) Nonwoven Composite Separator for a Lithium-ion Battery," J. Mater. Chem., 21(38), 14747-14754(2011).   DOI   ScienceOn
30 Kritzer, P., "Nonwoven Support Material for Improved Separators in Li-Polymer Batteries," J. Power Sources, 161(2), 1335-1340 (2006).   DOI   ScienceOn