• Title/Summary/Keyword: poly(3-hexylthiophene) (P3HT)

Search Result 104, Processing Time 0.033 seconds

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Photopatternable Conducting Polymer Nanocomposite with Incorporated Gold Nanoparticles for Use in Organic Field Effect Transistors

  • Huh, Sung;Choi, Hyun-Ho;Cho, Kil-Won;Kim, Seung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1128-1134
    • /
    • 2012
  • We investigated a new method for patterning organic field-effect transistors (OFETs) using a photopatternable conducting polymer nanocomposite, consisting of poly(3-hexylthiophene) (P3HT)-coated gold nanoparticles (AuNPs) that had been modified with a photoreactive cinnamate group, to form P3HT-AuNP-CI. We found that the addition of the cinnamate group to the nanoparticle surface assisted the preparation of a solvent-resistive semiconducting film and preserved the P3HT ordering, which was interrupted by Au-P3HT interactions, as well as provided UV-controllable electrical properties. The P3HT-AuNPs-CI films could be microscale-patterned via a UV crosslinking photoreaction, represented as a promising photopatternable semiconductor material for use in advanced applications, with tunable electrical properties for fabrication of sub-micron and microscale electronic devices.

The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer (P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Kim, Jeong-Ho;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

Lateral p-n junction Diode with organic single crystal by direct printing

  • Park, Yoon kyoung;Sung, Myung Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.144.1-144.1
    • /
    • 2016
  • We fabricate organic single crystal nanowire heterojunction p-n diode poly(3-hexylthiophene)(P3HT) and from Phenyl-C61-butyric acid methyl ester(PCBM) using by liquid-bridge mediated nanotransfer molding(LB-nTM) method. LB-nTM has been reported an one step direct printing method for making well-aligned nanowire arrays. Moreover, multi-patterning nanostructures can be fabricated with the consecutive printing process. As a result, it is possible to make simple and basic concept of heterojunction devices such as lateral organic p-n nanojunction diode. P3HT/PCBM nanowires heterojunction diode has rectifying behavior with on/off ratios of ~20.

  • PDF

Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells

  • Mi, Dongbo;Park, Jong Baek;Xu, Fei;Kim, Hee Un;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1647-1653
    • /
    • 2014
  • 9,10-Bis(bromomethyl)phenanthrene reacted with fullerenes via a Diels-Alder reaction to give phenanthrene-substituted fullerene mono-adducts (PCMA) and bis-adducts (PCBA) as electron acceptors for organic photovoltaic cells (OPVs). The syntheses of the fullerene derivatives were confirmed by $^1H$ $^{13}C$ NMR spectroscopy and MALDI-TOF mass spectrometry. PCMA and PCBA showed better light absorption in the UV-visible region than $PC_{61}BM$. Their electrochemical properties were measured using cyclic voltammetry. Accordingly, the lowest unoccupied molecular orbital (LUMO) energy levels of PCMA and PCBA were -3.66 and -3.57 eV, respectively. Photovoltaic cells were fabricated with a ITO/PEDOT:PSS/poly(3-hexylthiophene)(P3HT):acceptor/LiF/Al configuration, where P3HT and PCBA are the electron donors and acceptors, respectively. The polymer solar cell fabricated using the P3HT:PCBA active layer showed a maximum power conversion efficiency of 0.71%.

ZnO Nanowires and P3HT Polymer Composite TFT Device (ZnO 나노선과 P3HT 폴리머를 이용한 유/무기 복합체 TFT 소자)

  • Moon, Kyeong-Ju;Choi, Ji-Hyuk;Kar, Jyoti Prakash;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Inorganic-organic composite thin-film-transistors (TFTs) of ZnO nanowire/Poly(3-hexylthiophene) (P3HT) were investigated by changing the nanowire densities inside the composites. Crystalline ZnO nanowires were synthesized via an aqueous solution method at a low temperature, and the nanowire densities inside the composites were controlled by changing the ultrasonifiaction time. The channel layers were prepared with composites by spin-coating at 2000 rpm, which was followed by annealing in a vacuum at $100^{\circ}C$ for 10 hours. Au/inorganic-organic composite layer/$SiO_2$ structures were fabricated and the mobility, $I_{on}/I_{off}$ ratio, and threshold voltage were then measured to analyze the electrical characteristics of the channel layer. Compared with a P3HT TFT, the electrical properties of TFT were found to be improved after increasing the nanowire density inside the composites. The mobility of the P3HT TFT was approximately $10^{-4}cm^2/V{\cdot}s$. However, the mobility of the ZnO nanowire/P3HT composite TFT was increased by two orders compared to that of the P3HT TFT. In terms of the $I_{on}/I_{off}$ ratio, the composite device showed a two-fold increase compared to that of the P3HT TFT.

Characteristics of Organic Thin-Film Transistors with Polymeric Insulator and P3HT by Using Spin-Coating (스핀 코팅으로 제작된 유기 절연체와 P3HT 유기 박막 트랜지스터 특성)

  • Kim, Jung-Seok;Chang, Jong-Hyeon;Kim, Byoung-Min;Ju, Byeong-Kwon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1313-1314
    • /
    • 2007
  • This paper presents organic thin-film transistors (OTFTs) with poly(3-hexylthiophene)(P3HT) semiconductor and several polymeric dielectric materials of poly(vinyl phenol)(PVP), poly(vinyl alcohol)(PVA), and polyimide(PI) by using soluble process. The fabricated OTFT's have inverted staggered structure using transmission line method(TLM) pattern. In order to evaluate the electrical characteristics of the OTFT, capacitance-voltage(C-V) and current-voltage(I-V) were measured. C-V graphs were measured at several frequencies of 100 Hz, 1 kHz, and 1 MHz and ID-VDS graphs according to $V_{GS}$. The current on/off ratio and threshold voltage with each of PVP, PVA, and PI based OTFTs were measured to $10^3$, and -0.36, -0.41, and -0.62 V. Also, the calculated mobility with each of PVP, PVA, and PI was 0.097, 0.095, and 0.028 $cm^{2}V^{-1}s^{-1}$, respectively. In the cases of PVP and PVA, the hole mobility of P3HT was in excellent agreement with the published value of 0.1 $cm^{2}V^{-1}s^{-1}$.

  • PDF

유기용매의 종류가 유기태양전지 성능에 미치는 영향

  • Lee, Eun-Cheol;Hong, Byeong-Yu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.258-258
    • /
    • 2009
  • 본 연구에서는 P3HT(Poly(3-hexylthiophene-2))와 PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)를 donor, acceptor물질로 사용하고 Toluene, DCB, CB를 용매로 함으로써 각각의 경우에 대한 효율과 특성을 분석하였다. 그 결과, CB을 이용한 태양전지가 후 열처리 과정을 거친 후 가장 높은 효율을 보였으며, 광흡수율 측면에서는 열처리를 하였을 경우와 하지 않은 경우 모두에서 DCB가 뛰어났으나 다른 용매에 비하여 열처리를 통한 성능의 개선 효과는 가장 미비하였다.

  • PDF

Solution-Processed Gate Insulator of Ethylene-Bridged Silsesquioxnae for Organic Field-Effect Transistor (OTFT용 용액공정의 에틸렌-브리지드 실세스퀴옥산 게이트 절연체)

  • Lee, Duck-Hee;Jeong, Hyun-Dam
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 2010
  • Ethylene-bridged silsesquioxane resins were synthesized from two monomers: 1,2-bis(trimethoxysilyl)ethane and methyltrimethoxysilane. The silsesquioxane thin films were spin-coated from the copolymerized resins on silicon wafer. Metal insulator metal (MIM), metal insulator semiconductor (MIS) devices were utilized to investigate the electrical properties of the copolymerized thin films. As the films were inserted as gate insulator in the OTFT devices, the field effect mobilitites were evaluated by employing Poly(3-hexylthiophene) (P3HT) as organic semiconductor, which shows that their dielectric properties and mobility values are dependent on the molecular structures and Si-OH concentration involving in the films.

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).