• Title/Summary/Keyword: pollution index

Search Result 548, Processing Time 0.027 seconds

Selection of the Optimum Organic Matter Index for Surface Water Quality Management (지표수 수질관리를 위한 적정 유기물질지표 선정)

  • Han, Dae Ho;Choi, Ji-Yong
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.61-80
    • /
    • 2011
  • Through concentrated investments in environmental regulations centered around BOD, which is a biodegradable matter index, and basic environmental infrastructures, national BOD pollution level has continuously improved. Nonetheless, limitations of BOD management system has become evident through nation-wide stagnation and/or increases of refractory organic matters, such as COD, at main drinking water sources, and the need for a new index, which can easily indicate different environmental conditions, has increased. Therefore, this study suggests a new organic management index for a proper management of surface water. $COD_{Cr}$ and TOC were examined as candidates for surface water quality management index, and it was found that TOC was more appropriate than $COD_{Cr}$ as an organic matter management index. Through this study, it was found that TOC possesses following qualities: a more representative index; international acceptability; monitoring program is easier; better availability of analysis techniques; better accuracy and precision of analysis; less time required for analysis; ease of operation; management of disinfection byproducts; connection with present policies; existence of foreign and domestic application case studies; and correlation with water ecosystem.

  • PDF

Improvement of the Environmental Impact Assessment and Post-environment Impact Survey Reports Using Marine Environment Assessment Indices (해양환경 평가지수를 활용한 환경영향평가서 및 사후환경영향조사결과 통보서 개선 방안 연구)

  • Lee, Eojin;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.61-74
    • /
    • 2021
  • In this study, we used marine environment assessment indices to evaluate impacts of various development projects on the marine environment. TheWaterQuality Index (WQI) was applied in the field of marine water quality and the Cleanup Index of Harmful Chemicals (CIHC), the Cleanup Index of Eutrophication (CIET), the Enrichment Factor(EF) were used in the field of marine sediment. In the field of marine benthic organisms, the Benthic Health Index (BHI) and the Benthic Pollution Index (BPI) were utilized. Each assessment index was calculated using the data observed in the development project, and its characteristics and usefulness were evaluated. The assessment method and criteria were clearly defined for WQI, CIHC, and BHI. Furthermore, through these indices, an integrated environment impact analysis was possible. Apart from the indices presented in this study, there are various indices that can be used for evaluating the marine environment. Therefore, it is important to utilize appropriate indices according to the characteristics of each project.

Effects of Air Pollution on the Forest Vegetation Structure in the Vicinity of Sasang Industrial Complex in Korea (사상공단(沙上工團)의 대기오염(大氣汚染)이 주변(周邊) 산림(山林)의 식생구조(植生構造)에 미치는 영향(影響))

  • Kim, Jeom Soo;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The object of this study was to examine the effects of air pollution on forest vegetation structure in the vinicity of Sasang industrial complex in Korea. Forest vegetation structure was investigated at 19 sample plots surrounding industrial complex and at one site away from industrial complex as a control. The results obtained were as follows; 1. For analysis of vegetation structure, upperstory of forests was mostly consisted of Pinus thunbergii, and partly of Alnus firma and Robinia pseudoacacia. In midstory, major components were Pinus thunbergii, Robinia pseudoacacia, Rhus trichocarpa, Rhus chinensis and Styrax japonica, In lower story, Pinus thunbergii was a minor component, while Robinia pseudoacacia, Quercus serrata, Rhus trichocarpa. and Rhododendron yedoense var. poukhanense which were known to be resistant to air pollution were found in large number. Especially, importance percentage of Robinia pseudoacacia was high, while that of Rhododendron mucronulatum was low in surrounding industrial complex. 2. For woody plants, number of species, species diversity and similarity index in industrial complex, were not significantly different from those in control plot. 3. For herbs, Oplismenus undulatifolius appeared in large number in most plots. The $SDR_3$ of Miscanthus sinensis, Calamagrostis arundinacea, Paederia scandens, Spodiopogon cotulifer and Carex humilis were high, but that of Aster scaber, Saussurea seoulensis, Solidago virgaaurea var. asiatica and Prunella vulgaris var. lilacina were low in the vicinity of industrial complex. 4. Number of herb species decreased to below 10 species at surrounding industrial complex as compared to 20 species in the control plot. In addition species diversity, and similarity index in the industrial complex were lower than those in control plot. It may be concluded that Pinus thunbergii forests in industrial complex consists of tree species resistant to air pollution, and that composition of woody vegetation in industrial complex was not much different from control plot, while composition of herbs was already quite different between the two plots. Forest vegetation structure, therefore, may change with time due to air pollution in the industrial complex.

  • PDF

Evaluation of Characteristics of Particle Composition and Pollution of Heavy Metals for Bottom Sediments in Cheonsu Bay, Korea -Comparison of the Sediments Environment of Farming Area and Non-farming Area (천수만 해저 퇴적물의 입도특성 및 중금속 오염도 평가 -어장해역과 비어장해역의 퇴적환경 비교-)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.358-371
    • /
    • 2014
  • For the systematic scientific management in Cheonsu Bay of Korea, this study was conducedt to survey the particle composition, organic matter(I.L.) and heavy metals in farming and non-farming areas. The sediment of study area showed feature mixed property by sand, silt and clay. The farming area showed superior by fine-grained sediment, non-farming area showed superior by coarse-grained sediment. The organic pollution of farming area were appeared to be heavily polluted more than non-farming area. The concentration of total nitorgen in sediment was higher farming area than non-farming area. Also, in the case of heavy metals pollution in sediments, farming area was higher than non-farming area. The correlation analysis among to heavy metals, organic matter and particle size was found to have a good interrelationship. For evaluation of heavy metals pollution of sediments, three criteria are applied, Enrichment Factor(EF), Geoaccumulation index(Igeo) and NOAA criteria for sediment. In the case of EF, Heavy metals pollution was appeared to artificial effect all heavy metals if except Cu. In the case of Geoaccumulation index, Cu, Al, Pb was shown zero grade, that is non polluted group, and Cd, Hg, Cr was shown to 0~1 grade, that is mid polluted group, As was shown to 2 grade, that is moderately polluted group. In the case of NOAA, pollution levels of heavy metals except Cd belonged to a group of ERL(Effect range low)~ERM(Effect range median).

The geochemical characteristic and quality assessment of surface sediments in Sihwa Lake (시화호 표층퇴적물의 특성과 오염도 평가)

  • Ju, Jae Sik;Son, Moonho;Cho, Hyeon-Seo;Kim, Pyoung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.333-338
    • /
    • 2016
  • The purpose of this study was to understand the pollution level of the surface sediment of Sihwa Lake by assessing its geochemical characteristics and investigating the spatial distribution of trace metals and organic matter. In the surface sediment of Sihwa lake, the mean grain size was between 2.94 and 6.35 Ø and the main type of sediment was sandy silt. The concentrations of As, Co, Cr, Ni, V and Li among the metal elements in the surface sediment were correlated with the mean crust concentration (p<0.05). Based on the strong correlation between the metals (Cd, Cu, Pb and Zn) and organic matter (Ignition Loss), the concentrations of these metal elements seem to be controlled by the organic matter dilution effect. The trace metal pollution level, determined by applying the Republic of Korea Marine environmental standard and the US National Oceanic and Atmospheric Administration's sediment quality guidelines, showed the pollution level of As to be either close to or in excess of the above-mentioned standards at almost all levels. The enrichment factor and geoaccumulation index of As showed that there was an incremental increase of pollution by elements other than V, Cr, Co, Fe, Al and Mn. Moreover, the nearby industrial area and dike were more polluted than the other areas, so the surface sediments in Sihwa lake should be monitored by taking into consideration the geological variations.

A Study on the Selection of Adaptable Tree in Air Pollution Area (大氣汚染地域 適應 樹種 選拔에 關한 硏究)

  • 朴晥澈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.55-65
    • /
    • 1991
  • The study was performed to select a adaptable tree species under stressed field conditions where there are a industrial plants operating with a number of smoke stacks emitting pollutants, such as hydrogen fluoride and sulfur dioxide. As a result of the study, a tree species selected are due to construct a forest belt in a zones near industrial plants to reduce the concentrations of air pollutants. The concentrations of atmospheric hydrogen fluoride and sulfur dioxide were very higher at experimental sites near industrial plants (air-pollution sites) than at control site. The leaves of 7 tree species grown at air pollution sites contained more sulfur and, specially, fluorine than at those control site. Among the tested tree species, Ligustrum japonicum Thunb. and Euonymus japonica Thunb. grown at air pollution sites did not at all break out a foliar injury but appeared to be healthy, as well as those grown at control site. Acer pseudo-sieboldianum Kom., Pinus virginiana Mill., Larix leptolepis Gordon., Pinus koraiensis Sieb. et Zucc., Pinus strobus L., Picea abies Karst and Ligustrum obtusifolium Sieb. et Zucc., however, showed a severe fluoride-type foliar injury such as necrosis on tip or margin of leaves, etc. Fluorine found in leaves was proved to be correlated to sulfur found in leaves whereas index of foliar injury hadn't a good correlation to pollutants found in leaves. It appears that Euonymus japonica Thunb., Ligustrum japonica Thunb., Platanus acerifolia Willd, Chamaecyparis pisifera Endl., Populus tomentiglandulosa T. Lee and Sophora japonica L. grown at both experimental sites had a high value of percent survival whereas Pinus virginiana Mill., Pinus koraiensis Sib. et Zucc., Koelreuteria paniculata Laxm. and Alnus hirsuta Rupr. had an extremely low value of that. In comparison with control site, the percent tree height increments in Chamaecyparis pisifera Endl., Ligustrum japonicum Thunb., Quercus acutissima Carruth., Populus tomentiglandulosa T. Lee, Pinus thunbergii Parl and Euonymus japonica Thunb. and the percent upmost root diameters in Populus tomentiglandulosa T. Lee, Chamaecyparis pisifera Endl., Euonymus japonica Thunb., Ligustrum japonicum Thunb., Betula platyphylla var. japonica Hara and Pinus thunbergii Parl. cultivated at air polluted sites showed very high value above 90%, respectively. A significant negative correlation (r=-0.662) was recognized between the index of foliage injury and the percent collective character, which was the mean of tree characters such as percent survival, percent tree height increment and percent upmost root diameter increment which compared to those at air polluted site with those at control site. Based on the percent collective character Ligustrum japonicum Thunb., Euonymus japonica Thunb., Chamaecyparis pisifera Endl., Populus tomentiglandlosa T. Lee, Betula platyphyla var. japonica Hara and Platanus occidentalis L. have large value about 90%, respectively. Therefore, the results indicate that this tree species are adaptable species in air polluted regions. For better understanding of the adaptable tree species, furthur studies concerning the effects of various air pollutants on the tree growth are required.

  • PDF

Prototype Development of Marine Information based Supporting System for Oil Spill Response (해양정보기반 방제지원시스템 프로토타입 구축에 관한 연구)

  • Kim, Hye-Jin;Lee, Moonjin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • In oder to develop a decision supporting system for oil spill response, the prototype of pollution response support system which has integrated oil spill prediction system and pollution risk prediction system has developed for Incheon-Daesan area. Spill prediction system calculates oil spill aspects based on real-time wind data and real-time water flow and the residual volume of spilt oil and spread pattern are calculated considering the characteristic of spilt oil. In this study, real-time data is created from results of real-time meteorological forecasting model(National Institute of Environmental Research) using ftp, real-time tidal currents datasets are built using CHARRY(Current by Harmonic Response to the Reference Yardstick) model and real-time wind-driven currents are calculated applying the correlation function between wind and wind-driven currents. In order to model the feature which is spilt oil spreading according to real-time water flow is weathered, the decrease ratio by oil kinds was used. These real-time data and real-time prediction information have been integrated with ESI(Environmental Sensitivity Index) and response resources and then these are provided using GIS as a whole system to make the response strategy.

  • PDF

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers (서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구)

  • 박세창;윤성택;채기탁;이상규
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

The Prediction of Water Quality in Ulsan Area Using Material Cycle Model (물질순환모델을 이용한 울산해역의 수질예측)

  • SHIN BUM-SHICK;KIM KYU-HAN;PYUN CHONG-KUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.55-62
    • /
    • 2006
  • Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.