• Title/Summary/Keyword: polluted soil

Search Result 268, Processing Time 0.03 seconds

A Faunal Study in the Shihwa Constructed Wetland (시화호 인공습지 동물상 조사연구)

  • Lee, Woo-Shin;Woo, Kun-Suk;Shim, Jae-Han;Hur, Wee-Haeng;Choe, Hyun-Jung;Lee, Sang-Chul;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.93-105
    • /
    • 2004
  • The Shihwa wetland, a newly developed constructed wetland prototype in Korea with an area of approximately 104 ha, was established to improve the water quality severely polluted inflow streams into Lake Shihwa. Because this wetland could play a role as an ecological park in addition to improving the water quality, an ecological impact of the Shihwa constructed wetland has been a national concern. This paper focused on reporting the survey results for fauna among the entire investigation results for 3 years. A total of 129 terrestrial insect species have been observed from August 2001 to June 2002. Among them, Ischnura asiatica (Brauer) (order Odonata), Scymnus species (order Coleoptera) and Orthopteran species were frequently found in the reed bushes. A total of 77 bird species were recorded in a seasonal count, the maximum number of species was 34 in winter and the maximum number of individuals was 4,599 in summer. For the freshwater fish, only 4 species were found in 2000, however in 2001 and 2002, 12 species and 459 individuals were collected at four survey points. Among these 12 species, the dominant species were Mugil cephalus(36%), followed by Carassius auratus (25%) and Rhinogobius brunneus (22%). Meanwhile,12 individuals of Oryzias latipes were observed nearby, mostly downstream of the wetland. For the Herpetofauna at four survey areas, 3 species of amphibians and 3 species of reptiles were recorded. Because of remaining salinity in the soil of the Shiwha constructed wetland, Herpetofauna inflow to the wetland was scanty and mainly inhabited the upstream area. A total of 8 mammal species were recorded. Small-sized species were the striped field mouse, the Ussurian harvest-mouse, the Manchurian reed vole and the brown rat. Middle- and large-sized species were Korean water-deer, Korean raccoon dogs, Korean yellow weasels and feral cats.

Changes of NPS Loading Rates by Landuse Changes in Resort Development (리조트 개발사업에서 토지이용 변화에 따른 비점오염물질 부하량 변동 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.23-31
    • /
    • 2006
  • The nonpoint pollutants are originated from various land uses. Of the landuses, the development means the changes of the soil cover and the increases of imperviousness rate, which will increase the nonpoint pollutant emissions during a storm. Therefore, the Ministry of Environment in Korea has programed TPLMS(Total Pollution Load Management System) for four major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. The study area was forest landuse before development plan, however it is now changing to the resort. Some of the forest areas will be changed to parking lots, roads and buildings. The paved areas are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to determine the changes of pollutant loading rate by development plan and to provide the best management practices for controlling nonpoint pollutants.

  • PDF

Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus

  • Amin, Aatif;Sarwar, Arslan;Saleem, Mushtaq A.;Latif, Zakia;Opella, Stanley J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • Mercury-resistant ($Hg^R$) bacteria were isolated from heavy metal polluted wastewater and soil collected near to tanneries of district Kasur, Pakistan. Bacterial isolates AZ-1, AZ-2 and AZ-3 showed resistance up to $40{\mu}g/ml$ against mercuric chloride ($HgCl_2$). 16S rDNA ribotyping and phylogenetic analysis were performed for the characterization of selected isolates as Bacillus sp. AZ-1 (KT270477), Bacillus cereus AZ-2 (KT270478) and Bacillus cereus AZ-3 (KT270479). Phylogenetic relationship on the basis of merA nucleotide sequence confirmed 51-100% homology with the corresponding region of the merA gene of already reported mercury-resistant Gram-positive bacteria. The merE gene involved in the transportation of elemental mercury ($Hg^0$) via cell membrane was cloned for the first time into pHLV vector and transformed in overexpressed C43(DE3) E. coli cells. The recombinant plasmid (pHLMerE) was expressed and the native MerE protein was obtained after thrombin cleavage by size exclusion chromatography (SEC). The purification of fusion/recombinant and native protein MerE by Ni-NTA column, dialysis and fast protein liquid chromatography (FPLC/SEC) involved unfolding/refolding techniques. A small-scale reservoir of wastewater containing $30{\mu}g/ml$ of $HgCl_2$ was designed to check the detoxification ability of selected strains. It resulted in 83% detoxification of mercury by B. cereus AZ-2 and B. cereus AZ-3, and 76% detoxification by Bacillus sp. AZ-1 respectively (p < 0.05).

Isolation of Dibutyl Phthalate-Degrading Bacteria and Its Coculture with Citrobacter freundii CD-9 to Degrade Fenvalerate

  • Wu, Min;Tang, Jie;Zhou, Xuerui;Lei, Dan;Zeng, Chaoyi;Ye, Hong;Cai, Ting;Zhang, Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.176-186
    • /
    • 2022
  • Continued fenvalerate use has caused serious environmental pollution and requires large-scale remediation. Dibutyl phthalate (DBP) was discovered in fenvalerate metabolites degraded by Citrobacter freundii CD-9. Coculturing is an effective method for bioremediation, but few studies have analyzed the degradation pathways and potential mechanisms of cocultures. Here, a DBP-degrading strain (BDBP 071) was isolated from soil contaminated with pyrethroid pesticides (PPs) and identified as Stenotrophomonas acidaminiphila. The optimum conditions for DBP degradation were determined by response surface methodology (RSM) analysis to be 30.9 mg/l DBP concentration, pH 7.5, at a culture temperature of 37.2℃. Under the optimized conditions, approximately 88% of DBP was degraded within 48 h and five metabolites were detected. Coculturing C. freundii CD-9 and S. acidaminiphila BDBP 071 promoted fenvalerate degradation. When CD-9 was cultured for 16 h before adding BDBP 071, the strain inoculation ratio was 5:5 (v/v), fenvalerate concentration was 75.0 mg/l, fenvalerate was degraded to 84.37 ± 1.25%, and DBP level was reduced by 5.21 mg/l. In addition, 12 fenvalerate metabolites were identified and a pathway for fenvalerate degradation by the cocultured strains was proposed. These results provide theoretical data for further exploration of the mechanisms used by this coculture system to degrade fenvalerate and DBP, and also offer a promising method for effective bioremediation of PPs and their related metabolites in polluted environments.

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials (층상이중 수산화물을 이용한 5가 비소 흡착 특성)

  • Choi, Young-Mu;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.91-96
    • /
    • 2009
  • Layered double hydroxide is synthesized and used in the arsenate adsorption experiments. The shapes of two materials analyzed by TEM showed that unheated material is amorphous in shape, micro-sized while heat treated material showed more crystallized in shape and nano-sized. X-ray diffraction showed this result more obvious. $N_2$ adsorption-desorption results showed that the materials are mesoporous and the specific surface area of the heated material is more than two times larger than the unheated material. Adsorption of As(V) is expected to be more in the heated material than the unheated material. Kinetic test of arsenate adsorption showed very fast reaction. The reactivity of Fe with As(V) might be the main factor for this result. The reaction kinetic of the heated and the unheated materials were similar and even the adsorption isotherms showed similar results for both materials. Both materials are found to be useful in remediation of soil and groundwater polluted by waste mine tailings consist of high concentration of As(V).

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Assessment of Nitrogen Impaction on Watershed by Rice Cultivation (벼농사에서 질소유출이 수질에 미치는 영향평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Lee, Byeong-Mo;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.270-279
    • /
    • 2005
  • It is important to understand and evaluate the environmental impacts of rice cultivation for developing environmentally-friendly agriculture because rice is main crop in Korea and rice cultivation have both functions of water pollution and purification with environmental and cultivation conditions. This paper presents the evaluation of nitrogen impact by rice cultivation on water system. A simple protocol was proposed to assess the potential amount of nitrogen outflow from paddy field and most of parameters affect on the nitrogen outflow from paddy field such as the amount of fertilizer application, water balance, the quality and quantity of irrigation water, soil properties, nitrogen turnover in the soil and cultivation method were considered. To develop the protocol, coefficients for parameters affected nitrogen turnover and outflow were gotten and summarized by comparison and analysis of all possible references related, and by additional experiments at field and laboratory. And potential amount of nitrogen input and output by water in paddy field were estimated with the protocol at the conditions of the nitrogen contents of irrigation water, amount of fertilizer application, and irrigation methods. Where irrigation water was clean, below 1.0 mg $L^{-1}$ of nitrogen concentration, rice cultivation polluted nearby watershed. At the conditions of 2.0 mg $L^{-1}$ of nitrogen concentration, 110 kg $ha^{-1}$ of nitrogen fertilizer application and flooding irrigation, rice cultivation had water pollution function, but it had water purification function with intermittent irrigation. At the conditions of 3.0 mg $L^{-1}$ of nitrogen concentration and 110 kg $ha^{-1}$ of nitrogen fertilizer application, rice cultivation had water purification function, but that had water pollution function with 120 kg $ha^{-1}$ of nitrogen application. Where irrigation water was polluted over 6.0 mg $L^{-1}$ of nitrogen, it was evaluated that rice cultivation had water purifying effect, even though the amount of nitrogen application was 120 kg $ha^{-1}$.

Evaluation of the Sediments Contamination in the Lake Sihwa (시화호 퇴적토의 오염도 평가 및 효과적 관리방안)

  • Kim, Seung-Jin;Bae, Woo-Keun;Shin, Kyung-Hoon;Choi, Dong-Ho;Baek, Seung-Chun;Yoon, Seung-Joon;Choi, Hyung-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.16-24
    • /
    • 2007
  • An investigation on the polluted sediments in the Lake Sihwa and the benthos that inhabited on the sediments was conducted. Cost effective remediation alternatives were derived form the results of the investigation. The sediment samples taken from four sampling points out of thirteen showed relatively high heavy metal (particularly copper) concentrations which exceeded the Effects Range Low (ERL) of the National Oceanic and Atmospheric Administration, USA. The four sampling points were located in front of industrial complexes. Although the heavy metals appeared to have affected the growth of the benthos, the concentration of it did not exceed the criteria of dredging that were developed by Netherlands or the State of Washington, USA. However, contamination by organic matters and sulfur compounds was severe, which exceeded the criteria of dredging that were established in Japan. The sediments taken from the four sampling points which were contaminated with heavy metals showed higher organic matter content in general. The organic matters in the sediments depleted oxygen in summer, which appeared to be fatal to the benthos. A comprehensive analysis on the sediments, benthos, and other environmental impact from the contaminated sediments drew a conclusion that the benthonic environment of the Lake Sihwa needed a stepwise remediation, giving a particular emphasis on the clean up of the sediments upstram of the Lake which could cause odor problems to the nearby residential area.

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant (분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1477-1488
    • /
    • 2014
  • Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.