• Title/Summary/Keyword: polluted soil

Search Result 268, Processing Time 0.026 seconds

A Study on the Reinforcement and Environmental Impact of LW Injection (LW주입에 의한 지반보강 및 환경영향성에 관한 연구)

  • Chun, Byungsik;Do, Jongnam;Sung, Hwadon;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.121-131
    • /
    • 2006
  • This study is performed to examine the ground reinforcement effect and the environmental impact of LW injection, which is widely used during the excavation of high-rise apartment buildings. In addition, it proved that by conducting field exploration and laboratory test the engineering ground reinforcement effect of LW injection in the ground has low coefficient of permeability. The environmentally friendly aspect was evaluated through an assessment of environmental impact. The results of laboratory test shows that LW coagulating material with SC type soil structure has significant improvement of uniaxial compressive strength, increasing by three times and the shear strength increasing by twice, coefficient of permeability decreasing six to seven times. And the result of environmental impact tests show that from 6 hour after where the pH increases until 7.96 to initially it diminished, it started and to 80 hour after it recovered a pH 7.25 initially with 7.30. The chemical composition analysis test result that unpolluted water and polluted water hydrogen ion concentration (pH) show that the unpolluted water pH 7.36, polluted water pH 7.85, which is inside the Ministry of Environment standard of drinking water (the pH 5.8~8.5). The assessment of environmental impact and chemical analysis test also demonstrate that the LW coagulating material is environmentally friendly. In the $Cr^{6+}$ and the salinity detection test, it was proven that the salinity is slight and the $Cr^{6+}$ is not detected.

  • PDF

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

The Relationship between Pollutants in Soil and Leaves in Air Polluted Areas (대기오염지역(大氣汚染地域)에서의 토양(土壤) 및 해송엽중(海松葉中) 오염물질간(汚染物質間)의 상관분석(相關分析))

  • Kim, Jong-Kab
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.140-145
    • /
    • 1992
  • In order to find out pollutants in leaves of pinus thunbergii, and relationship between pollutants in soil and leaves of pinus thunbergii surrounding Onsan Industrial Complex in Korea, this study was performed. Concentrations of water-soluble sulfur of P. thunbergii leaves were a range of 0.06%-0.25%, but at the vicinity of industrial complex, it was judged to be hindered in growing trees as a range of 0.13%-0.25%. In P. thunbergii leaves the contents of Fe, Mn, Zn and Cu were showed as a range of 87.2 ppm-319.8 ppm, 100.0 ppm-581.3 ppm, 39.0 ppm-134.0 ppm and 1.2 ppm-4.8 ppm, respectively, and they were generally high at P. thunbergii leaves of the vicinity of refinery of industrial complex. But concentrations of Cu and Pb only showed little contents. In the correlation between soil and leaves pollutants, there were significant correlation between total S and water-soluble S(r=$643^{\ast}$), between Fe(r=$0.681^{\ast}$), Zn(r=$0.832^{{\ast}{\ast}}$)), and Cd(r=$0.775^{{\ast}{\ast}}$) in soils and those in P. thunbergii leaves at 10% or 5% level, respectively, and as these results, it was inferrec that heavy metals in soils had relations with those in leaves.

  • PDF

Sequential Extraction of Cd, Zn, Cu, and Pb from the Polluted Paddy Soils and Their Behavior (중금속 오염지 논토양의 Cd, Zn, Cu, Pb의 연속 침출 방법 비교와 연차적 오염도 변화)

  • Yoo, Sun-Ho;Lee, Jong-Ryul;Kim, Key-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.207-217
    • /
    • 1995
  • Extracting efficiencies of seven extracting solutions currently employed in extracting heavy metals from soils were compared and the functional relationships among them were calculated by regression analysis for Cd, Zn, Cu, and Pb. Extracting solutions employed were 0.1M HCl, 0.1M $HNO_3$, 0.05M EDTA, 0.001M DTPA(pH 7.3), 1M $NH_4OAc$ (pH 7.0), 0.1M $NH_4Ox$, and 4M $HNO_3$ respectively. Soil samples were collected from rice paddy fields near old zinc mining sites and from rice paddy fields near agro-industry complexes. Soils sampled from old zinc mining sites were also extracted using a sequential extraction method. Extraction by 4M $HNO_3$ and sequential extraction were performed on the samples collected both in 1979 and in 1991 to investigate the change in content and in chemical form of heavy metals. Functional relationships among the extracting solutions were highly correlated for Cd and Zn, whereas those for Cu and Pb were not. The predominant chemical form of Cd. Zn, Cu, and Pb in soils from old zinc mining sites was found to be of sulfide/residue form. The exchangeable form of Cd, the organically bound form of Cu, and the carbonate form of Pb were relatively high, while the sulfide/residue form of Zn was very high(> 79%). Although transformation among the extracted forms was not clear during those 12 years, a decrease in total content of Cd, Zn, Cu, and Pb was clearly observed.

  • PDF

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.

The Distribution Characteristics of Heavy Metals at Field and Upland Soils (경작지 및 산지토양의 층위별 중금속농도의 분포 특성)

  • Choi, I-Song;Park, Jea-Young;Oh, Jong-Min
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.406-415
    • /
    • 2002
  • Heavy metal concentrations (Cu(II), Zn(II), Pb(II) and Cd(II)) at field and upland soils were investigated with two extraction methods, 0.1mole L$^{-1}$ HCI extraction and HNO$_3$-HCIO$_4$ digestion, in order to estimate soil pollution and to understand their distribution and accumulation characteristics. Through an application of 0.1mole L$^{-1}$ HCI extraction method, the surface horizons of field soils were found to have higher concentrations of heavy metals (except Pb(II)) than those of upland soil. It was also seen that Cu(II), Zn(II) and Cd(II) were enriched in surface horizon of field soils, whereas upland soils did not show much difference across depth. When the method of HNO$_3$-HCIO$_4$ digestion was used, upland soils showed higher concentrations than those of other soils, and the distribution of heavy metals did not show much difference between horizons of all soils. From these results, it was recognized that, although total natural contents of heavy metals were the largest in upland soil, surface horizons of field soils became gradually polluted with heavy metals. Especially, Cd(II) is considered as a potential metallic pollutant in field soils because of its weak adsorption strength. Concentrations of heavy metals also seemed to be influenced by their adsorption characteristics. When we computed 0.1HCl$_{ext}$HNCL$_{dig}$ ratios to estimate the adsorption strengths of soil heavy metals, their adsorption strengths decreased on the order of Cu(II) > Zn(II)> Pb(II) > Cd(II). The distribution characteristics of heavy metals in field soil, especially Cd(II),are required more detail study because of its importance of land use and complicated mobilization characteristic.

Effects of Air Pollution and Acid Precipitation on Soil pH and Distribution of Elements in Forest Ecosystem (대기오염(大氣汚染) 및 산성우(酸性雨)가 삼림생태계(森林生態系)의 토양산도(土壤酸度) 및 양료분포(養料分布)에 미치는 영향(影響))

  • Lee, Soo Wook;Min, Ill Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.1
    • /
    • pp.11-25
    • /
    • 1989
  • Four regions have been selected and surveyed to investigate the effects of air pollution and acid deposition on forest ecosystem. They were Seoul as urban region, Yeochon and Ulsan as industrialized region, and Kangwondo as uncontaminated region. Soil pH and the distribution of elements were analyzed in process of time for three years as well as by distance from pollution sources. In general, forest soils acidified in process of time from pollution sources to suburban areas. Hydrogen ion concentration in forest soils increased in 1988 as much as 60% of that in previous year. Average soil pH values in coniferous forest were 4.45 in Seoul, 4.54 in Yeochon, 4.81 in Ulsan, and 6.03 in Kangwondo. Forest soil pH increased with the distance from pollution sources to suburban areas at constant rate within short ranges (up to 30 km) and at decreasing rate within long ranges (up to 200 km). On the contrary, sulfur content in soils decreased every year except in Yeochon region. Base saturation of forest soils in polluted regions were all below 20% level compared with 70% in Kangwondo region. Active aluminum content in soils increased with the soil acidification at the highest rate in Yeochon, and the next in Ulsan and Seoul. Heavy metal content such as copper and zinc in tree tissues were the lowest in Kangwondo region, and the next in Yeochon, Seoul and Ulsan.

  • PDF

Research on the Analysis of Unregulated Organic Pollutant Compounds in Soil (Focusing on 16 Polycyclic Aromatic Hydrocarbons) (토양 중 미규제된 유기오염물질 분석연구 (다환방향족탄화수소 16종을 중심으로))

  • Kim, Jong-Hyang;Gang, Jong-Min;Lee, Bang-Hee;Her, Jong-Sou
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-74
    • /
    • 2011
  • The aim of study was to investigate polluted amounts 16 PAHs in railroad(waste railway ties) area, factory area and land-fill area. All of the samples were analyzed by GC-MSD(SIM mode), and the recovery range, detection limit and standard deviation obtained by this experiment were 73.88 ~ 94.75%, 0.009 ~ 2.252 ${\mu}g$/kg and 1.861 ~ 12.373, respectively. The concentrations of total PAHs(t-PAHs) and total carcinogenic PAHs(t-PAHcarc) in soils of three area were in the range of 12.54 ~ 3274.95 ${\mu}g$/kg on a wet weight basis with a mean value of 499.8 ${\mu}g$/kg and 0 ~122.77 ${\mu}g$/kg with a mean value of 20.16 ${\mu}g$/kg, respectively. The correlation between t-PAHs and t-PAHcarc appeared very high in railroad(waste railway ties) area ($R^2$ = 0.8301), factory area ($R^2$ = 0.9217) except land-fill area($R^2$ = 0.3782), indicated that t-PAHcarc concentration increases in proportion with t-PAHs.

Identification and Characterization of Diesel Degrading Bacteria Isolated from Soil Artificially Contaminated with Diesel Oil (인공오염토양에서 분리한 디젤분해세균의 동정 및 특성)

  • Lee, Su-Jin;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.148-156
    • /
    • 2006
  • Potential hydrocarbon degrading bacteria were screened from the site artificially polluted with 20,000 ppm of diesel. Among the isolates, two strains, SJD2 and SJD4, showed higher activities to degrade diesel on the Bushnell-Hass broth medium containing 2% of diesel. 16S rDNA sequence analysis revealed that SJD2 and SJD4 were Bacillus fusifomis and B. cereus, respectively. Both strains were found to grow in a wide range of temperature between $20^{\circ}C-55^{\circ}C$, with the best at $30^{\circ}C-37^{\circ}C$. This is the first report, as far as we know, that B. fusifomis is capable of degrading diesel. We hope that a new isolate, B. fusifomis, will efficiently conduct bioremediation at the contaminated sites with petroleum hydrocarbons.

  • PDF

Analysis of Environmental Hazard by the Leachate from Disposal Waste (매립장 침출수 환경 재해에 관한 연구)

  • Kim, Jun-Kyoung;Bae, Hyo-Jun;Choi, Oh-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.145-151
    • /
    • 2003
  • The domestic and the industry wastes which mainly come out of human life activities have been usually processed mainly by the incineration method and/or the method of reclamation. The method of reclamation, specially open dumping, has caused significant environmental pollution problems on the local or regional soil and groundwater system by leachate. Therefore, to investigate the 3-D structure characteristics of environmental pollution area is one of the hot subjects. We applied dipole-dipole method of electrical resistivity survey to investigate 3-D environmental contamination characteristics of the Noeun landfill area. For electrical resistivity survey, the line for measurements was established parallel to the main boundary of the Noeun landfill, for effective investigation of the whole landfill area. The result shows that the uppermost layer of the Noeun landfill is believed to be stabilized completely, based on the result of electrical resistivity values. However, the lowest layer of the Noeun landfill was partially polluted by leachate. Therefore, the electrical resistivity survey method is believed to be the one of the most effective methods to investigate three-dimensional distribution of leachate occurred in the lower part of landfill area.