• Title/Summary/Keyword: pollutant loads

Search Result 360, Processing Time 0.025 seconds

Long-Term Trend Analysis and Exploratory Data Analysis of Geumho River based on Seasonal Mann-Kendall Test (계절 맨-켄달 기법을 이용한 금호강 본류 BOD의 장기 경향 분석 및 탐색적 자료 분석)

  • Jung, Kang-Young;Lee, In Jung;Lee, Kyung-Lak;Cheon, Se-Uk;Hong, Jun Young;Ahn, Jung-Min
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.217-229
    • /
    • 2016
  • The government has conducted a plan of total maximum daily loads(TMDL), which divides with unit watershed, for management of stable water quality target by setting the permitted total amount of the pollutant. In this study, BOD concentration trends over the last 10 years from 2005 to 2014 were analyzed in the Geumho river. Improvement effect of water quality throughout the implementation period of TMDL was evaluated using the seasonal Mann-Kendall test and a LOWESS(locally weighted scatter plot smoother) smooth. As a study result of the seasonal Mann-Kendall test and the LOWESS smooth, BOD concentration in the Geumho river appeared to have been reduced or held at a constant. As a result of quantitatively analysis for BOD concentration with exploratory data analysis(EDA), the mean and the median of BOD concentration appeared in the order of GH8 > GH7 > GH6 > GH5 > GH4 > GH3 > GH2 > GH1. The monthly average concentration of BOD appeared in the order of Apr > Mar > Feb >May > Jun > Jul > Jan > Aug > Sep > Dec > Nov > Oct. As a result of the outlier, its value was the most frequent in February, which is estimated 1.5 times more than July, and was smallest frequent in July. The outlier in terms of water quality management is necessary in order to establish a management plan for the contaminants in watershed.

Development of Coupled SWAT-SWMM to Evaluate Effects of LID on Flow Reduction in Complex Landuse (복합토지유역에서의 LID적용에 따른 유출량 저감효과 분석을 위한 SWAT-SWMM 연계모델 개발)

  • Woo, Won Hee;Ryu, Jichul;Moon, Jong Pill;Jang, Chun Hwa;Kum, Donghyuk;Kang, Hyunwoo;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.495-504
    • /
    • 2012
  • In recent years, urbanization has been a hot issues in watershed management due to increased pollutant loads from impervious urban areas. The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and water quality studies at watershed scale. However, the SWAT has limitations in simulating water flows between HRUs and hydrological effects of LID practices. The Storm Water Management Model (SWMM) has LID capabilities, but it does not simulate non-urban areas, especially agricultural areas. In this study, a SWAT-SWMM coupled model was developed to evaluate effects of LID practices on hydrology and water quality at mixed-landuse watersheds. This coupled SWAT-SWMM was evaluated by comparing calibrated flow with and without coupled SWAT-SWMM. As a result of this study, the $R^2$ and NSE values with SWAT are 0.951 and 0.937 for calibration period, and 0.882 and 0.875 for validation period, respectively. the $R^2$ and NSE values with SWAT-SWMM are 0.877 and 0.880 for validation period. Out of four LID scenarios simulated by SWAT-SWMM model, the green roof scenario was found to be most effective which reduces about 25% of rainfall-runoff flows.

Study on the Runoff Characteristics of Non-point Source Pollution in Municipal Area Using SWMM Model -A Case Study in Jeonju City (SWMM모델을 이용한 도시지역 비점오염원의 유출특성 연구 -전주시를 대상으로)

  • Paik Do-Hyson;Lim Young-Hwan;Choi Jin-Kyu;Jung Paul-Gene;Kwak Dong-Heui
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1185-1194
    • /
    • 2005
  • The runoff characteristics of non-point source pollutions in the municipal area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model). The flow rates and water qualities of runoff from two types of drainage conduits were measured respectively. One was a conventional combined sewer system and the other was a separated sewer system constructed recently From August to November in 2004, investigations on two rainfall events were performed and flow rate, pH, BOD, COD, SS, T-N and T-P were measured. These data were also used for model calibration. On the basis of the measured data and the simulation results by SWMM, it is reported that $80-90\%$ of pollution load is discharged in the early-stage storm runoff. Therefore, initial 10-30 mm of rainfall should be controlled effectively for the optimal treatment of non-point source pollution in urban area. Also, it was shown that the SWMM model was suitable for the management of non-point source pollution in the urban area and for the analysis of runoff characteristics of pollutant loads.

Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Nakdong River Unit Watersheds (부하지속곡선(LDC ; Load Duration Curve)을 활용한 낙동강수계 오염총량 단위유역 목표수질 평가방법 적용 방안)

  • Jung, Kang-Young;Kim, Hong Tae;Kim, Sang Soo;Kim, Shin;Shin, Dong Seok;Kim, Gyeong Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.433-445
    • /
    • 2017
  • In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Characteristics of Pollutant Loading into Streams from Flooded Paddies -On The Special Reference to Total Kjeldahl Nitorgen and Total phosphorous- (농경지로부터의 오염물질 유출부하특성 - 전Kjeldahl 질소 및 전인을 중심으로)

  • 홍성구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 1989
  • With an objective to provide basic information for the management and the prediction of eutrophication in lentic water Systems, total amount of Kjeldahl nitrogen(T-N) and phosphorous(T-P) from irrigated water and drained water from flooded paddies were investigated during the rice growing period of 1988. A 29.3 ha paddies near Jungnam-myun, HwaSung-gun, Gyungi Province, Korea was instrumented for measuring runoff and sampling irrigated water and drained water from paddies. The following conclusions may be drawn from the result of this study. 1.During 115 days of investigation, T-N load for paddies was 362.6kg and T-P 63.44kg.These would be converted to 12.4kg T-N/ha and 2.17kg T-P/ha, respectively. 2.The T-N and T-P loadings in different periods showed a significant difference. The 25% of T-N loading was drained soon after fertilization period and 60% was drained during the rainy season from July 5 to July 24. 3.Annual loadings from paddies could be calculated to 30kg T-N/ha/year and 52kg T-P/ha/year considering non-measurement periods. 4.After the rainy season, the nutrient loads from drained water showed much less than those from irrigated water, and it may be suggested that the paddies would act as a stabilization pond. 5.The average concentrations of nutrients at 0.9km downstream from investigated paddies were 2.02(T-N) mg/l and 0.52(T-P) mg/I, which were 1.82(T-N) mg/l and 0.056(T-P)mg/l lower than those of drained water from paddies.

  • PDF

Simulation of 10-day Irrigation Water Quality Using SWAT-QUALKO2 Linkage Model (SWAT-QUALKO2 연계 모형을 이용한 관개기 순별 관개수질 모의)

  • Kim, Ji Hye;Jeong, Han Seok;Kang, Moon Seong;Song, In Hong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.53-63
    • /
    • 2012
  • The objectives of this study were to develop a linked watershed-waterbody modeling system and to assess the impacts of indirect wastewater reuse on irrigation water quality. The Osan stream watershed within Gyeonggi-do of South Korea was selected for this study. The linked modeling system was composed of the SWAT (Soil and water assessment tool) and QUALKO2 models. The SWAT model was calibrated and validated using the stream discharge and water quality data from 2010 to 2011. Runoff and non-point source pollutants from each subbasin and stream discharge from 1980 to 2009 were simulated by the SWAT model and applied to the QUALKO2 model. The QUALKO2 model was calibrated and validated under the conditions of low water and normal discharges, respectively. Finally, The 10-day irrigation water quality from April to September was simulated. The statistical measures of coefficient of determination ($R^2$), reliability index (RI), and efficiency index (EI) were used to evaluate the system performance. The $R^2$, RI and EI values ranged from 0.5 to 1.0, 1.03 to 1.92, and -35.03 to 0.95, respectively. The 10-day irrigation water quality showed the concentrations of BOD and coliform exceeded the water quality guidelines for wastewater reuse. The linked modeling system can be a useful tool to estimate non-point source pollutant loads in watershed and to control the water quality of effluent from a wastewater treatment plant and irrigation water in the downstream waterbody.

Seasonal variation of physicochemical factor and fecal pollution in the Hansan-Geojeman area, Korea

  • Park, Young Cheol;Kim, Poong Ho;Jung, Yeoun Joong;Lee, Ka Jeong;Kim, Min Seon;Go, Kyeong Ri;Park, Sang Gi;Kwon, Soon Jae;Yang, Ji Hye;Mok, Jong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.17.1-17.9
    • /
    • 2016
  • The seasonal variation of fecal coliforms (FCs) and physicochemical factors was determined in seawaters of the Hansan-Geojeman area, including a designated area for oyster, and in inland pollution sources of its drainage basin. The mean daily loads of FCs in inland pollution sources ranged from $1.2{\times}10^9$ to $3.1{\times}10^{11}$ most probable number (MPN)/day; however, the pollutants could not be reached at the designated area. FC concentrations of seawaters were closely related to season, rainfall, and inland contaminants, however, within the regulation limit of various countries for shellfish. The highest concentrations for chemical oxygen demand (COD) and $chlorophyll-{\alpha}$ in seawaters were shown in the surface layer during August with high rainfall, whereas the lowest for dissolved oxygen (DO) in the bottom layer of the same month. Therefore, it indicates that the concentrations of FC, COD, DO, and $chlorophyll-{\alpha}$ of seawaters were closely related to season and rainfall.

Estimation of Reservoir Discharge to Support TMDL Management in the Geum River Basin (금강수계 오염총량관리를 고려한 저수지 방류량산정)

  • Noh Joon-Woo;Kim Soo-Jun;Kim Jeong-Kon;Koh Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.627-636
    • /
    • 2006
  • This study estimates adequate discharge to meet the specified target water quality concentration using the pollutant load of the Geum river basin given in TMDL (Total Maximum Daily Load) report. During the 1st phase, BOD is chosen as a target water quality constituent under regulation of the Ministry of Environment in Korea. BOD, TN, and TP loads estimated based on the TMDL and provincial zones were re-distributed for 10 major tributaries, and the remaining areas along the main river are classified as 15 incremental flow areas. Water quality modeling was conducted using Qual2E for the low flow period of a year (i.e. $March{\sim}April$). The results of the model simulation showed that about 30 cms from the Daechung dam would be sufficient to satisfy the target water quality in the Geum river downstream of the Daechung multipurpose Dam.

Analysis of First Flushing Effects for the Vineyard Storm Runoff (강우시 포도밭에 대한 초기세척효과 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Lee, Jae-Woon;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.977-986
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff in the orchard areas and quantitatively estimated effluence of nonpoint source pollutants for the volume of runoff. Two target areas under vine cultivation were each $2,000m^2$ and $1,800m^2$, located in Gyeongju City. Since grape was the only crop on the target area, the characteristics of stormwater runoff at vineyard could be evaluated independently. A total of 51 rainfall events in the vineyard area during two years(2008-2009) was surveyed, and 19 of them became stormwater runoff, with rainfall ranging 16.5 - 79.7 mm and antecedent dry period of 1-13 days. The pollutant runoff loads by volume of stormwater runoff showed BOD ranging 19.5 - 45.3% in 30% of runoff volume. The average pollution discharge rate was 32.4%, indicating small first flush effect of BOD. The range of SS concentrations was 5 - 52.0% in 10% of runoff volume, showing the average 28.7% of discharge rate, about 3 times more than rainfall effluent. TOC and TN appeared to be similar to the results of BOD, the average discharge rate of 30.9% and 30.6% for TOC and TN, respectively, for 30% of stormwater runoff volume. Average discharge rate of COD and TP in the same runoff volume was 35.1% and 36%, respectively, showing comparatively high discharge ratio. As the targeted vineyard area was permeable land, the pollution load ratio against rainfall-runoff volume appeared to be 1:1, implying no strong first flush effect for all the survey items.