• Title/Summary/Keyword: pollutant loadings

Search Result 120, Processing Time 0.021 seconds

A Study on Scale and Characteristics of Nonpoint Pollution Using STORM Model (STORM 모형을 이용한 비점오염원 부하의 규모와 특성에 관한 연구)

  • 김도연;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1996
  • The more accurate estimation of the pollutant loadings from nonpoint source is needed to evaluate water quality of water resources such as river and reservoir. Therefore this study was performed to grasp the scale and characteristics of pollutant. In this study, STORM model was applied to I-cheon district to estimate runoff and pollutant loading of SS, BOD, T-N and $PO_4-P$. The results estimated by STORM model were fitted well to surveyed water quality in flow, SS and BOD. The annual loadings were estimated to be 36,463 kg/$km^3$/yr of SS, 8,090 kg/$km^3$/yr of BOD, 4,435 kg/$km^3$/yr of T-N and 358 kg/$km^3$/yr of $PO_4-P$. It was also found that the monthly pollutant loadings of SS, BOD, $PO_4-P$ were greatest in May and T-N in April.

  • PDF

The Characteristics of Water Quality and the Estimation of Pollutant Loadings from the Flowing Streams in Cheju Island (제주도내 유수하천에 대한 수질특성 및 오염부하량 산정)

  • 조은일;오윤근
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 1998
  • In order to manage the water quality from the flowing streams in Cheju Island, the characteristics of water quality was investigated from August, 1996 to May, 1997 and the pollutant loadings for future were estimated from the watershed at each stream. Comparing the mean concentrations of each water quality with the criterion of water quality in river, it was under I class except for Changgo Stream, for DO, under I class at the whole station for SS and under II class for BOD. As the pollutant loadings at each stream in 2020 is compared with those in 1996, the estimated results are as follows : 1) for BOD, 59% at Donghong Stream, 24% at Yeonoe Stream, 44% at Ohngpo Stream and 57% at Changgo Stream. 2) for T-N, 91% at Donghong Stream, 76% at Yeonoe Stream, 63% at Ohngpo Stream and 89% at Changgo Stream. 3) for T-P, 69% at Donghong Stream, 42% at Yeonoe Stream, 45% at Ohngpo Stream and 73% at Changgo Stream. The point source loadings discharged through combined sewer could be treated at sewage treatment plant. However, the expected slow decreasing rate of BOD, T-N, and T-P loadings is due to the part of untreated nonpoint source loadings. Nonpoint source loading overflow typically occurs when the flow of stormwater combined with sewage exceeds the capacity of the interceptor sewers. Since most of the sewers used in Cheju Island are the combined sewers, the combined overflow sewage is bypassed into the receiving water area after a rainstorm. Therefore, a means to control nonpoint source loadings should be considered for the river and marine water quality management.

  • PDF

Comparison of Water Characteristics of Cleaning Wastewater and Stormwater Runoff from Highways (고속도로 청소폐수와 노면유출수의 수질특성 비교)

  • Lee, Ju-Goang;Lee, Eui-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.169-176
    • /
    • 2007
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and pollutant mass emissions, such as sand, cereals, and dust from vehicle activities. Most of them in highways are collected by cleaning trucks or discharged to the adjacent soil and water system through the drain ditch in stormwater. Therefore, it is necessary to investigate the relationship between water concentration and total pollutant loadings from the paved areas. From the experiment, CODcr concentration of the cleaning wastewater was 17 times greater than that of the stormwater runoff. Also, concentrations of heavy metals (Cu, Fe, Zn) were 1.3 to 1.5 times higher when compared to the stormwater runoff. While total discharged loadings was insignificant in the cleaning wastewater. In conclusion, these results provide some evidence that the stormwater runoff may be managed carefully to the aspect of total pollutant loadings and the cleaning wastewater may be handled cautiously with the pollutant concentrations in highways.

Assessment of Cell Based Pollutant Loadings in an Intensive Agricultural Watershed (농업 소유역 격자단위 오염부하량 평가)

  • Kang, Moon-Seong;Cho, Jae-Pil;Chun, Jong-An;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.87-94
    • /
    • 2009
  • The objectives of this paper were to estimate cell based pollutant loadings for total maximum daily load (TMDL) programs and to evaluate the applicability of the agricultural nonpoint source (AGNPS) model for an intensive agricultural watershed in Korea. The model was calibrated and validated at a watershed of 384.8 ha of drainage area using the observed data from 1996 through 2000 in terms of runoff, suspended solid, total nitrogen, and total phosphorus on a hourly basis. Analysis of spatial variations of pollutant loadings for rainfall frequencies of various intensities and durations were conducted. In addition, the validated model was applied to estimated the TMDL removal efficiency for best management practices (BMPs) scenarios which were selected by taking into account the pollutant characteristics of the study watershed. The model can help to understand the problems and to find solutions through landuse changes and BMPs. Thus, the method used for this study was able to identify TMDL quantitatively as well as qualitatively for various sources pollution that are spatially dispersed. Also it provides an assessment of the impact of BMPs on the water bodies studied, allowing the TMDL programs to be complemented more effectively.

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Estimation of Runoff Pollutant Loadings in Boryung Reservoir Watershed (보령담수호 유역의 유출 오염부하량 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Cho, Jae-Young;Kim, Young-Joo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.30-33
    • /
    • 2001
  • This study was carried out to estimate the runoff pollutant loadings for water quality management in Boryung freshwater reservoir watershed. The hydrological monitoring system were operated for water level measurement during $1999{\sim}2000$ and temporal variation of water quality constituents such as pH, EC, total nitrogen, total phosphorus were analysed, periodically. Monthly runoff volumes by TANK model and potential pollutant loadings calculated by unit method were compared with measured values.

  • PDF

Runoff of Pollutants in a Reclaimed Paddy Field (간척농지에서의 오염물질 유출특성(지역환경 \circled3))

  • 최인욱;박병흔;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.637-642
    • /
    • 2000
  • In order to control the water quality of freshwater lake in tidal reclaimed land, it is needed to evaluate accurate amount of pollutant loadings from reclaimed paddy field. This study was carried out to investigate the pollutant loading from a reclaimed paddy field. Site of the study was a paddy field located in Taeho reclaimed land, with an areas of 38.5 hectares. The runoff loadings of Total-Nitrogen, Total-Phosphorus, and Chemical Oxygen Demand were 49.5 kg/㏊/yr, 3.2 kg/㏊/yr and 154.0 kg/㏊/yr, respectively. The runoff loadings in Total-Nitrogen and Total-Phosphorus from this study were much higher values than the pollutant load factor of Total-Nitrogen and Total-Phosphorus from the paddy field published by the Ministry of Environment.

  • PDF

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Effects of Fertilizer Types on Pollutant Loadings from Rice Paddy Fields (비종에 따른 논에서의 배출부하량 영향평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Jang, Jeong-Ryeol;Lee, Eun-Jeong;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.111-119
    • /
    • 2011
  • The main objective of this study was to evaluate the effects of control-release fertilizer (CRF) on pollutant loadings from a small watershed. The Baran watershed, 386 ha in size, was selected as the study site, and the AGNPS (Agricultural Non-point Source Pollution) model was used to evaluate the effects of fertilizer types. Digital maps of digital elevation (DEM), slope distribution, channel, flow direction, landuse, soil, and curve number were extracted from the study watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the observed data collected for 2 years (1999 to 2000). Calibration and validation resulted in $R^2$ values of 0.75-0.91 for all the water quality parameters. All the paddy fields (21.2 %) of the study watershed were sprayed by either CRF or NPK (standard fertilizer). In CRF application, total nitrogen (TN) load was 4.9% less than NPK application, however total phosphorus (TP) load was 0.7 % more than NPK application. In CRF application, considering only paddy fields in the study area, TN load was 38.7 % less than NPK application. Using CRF in paddy fields could be one of the ways to reduce pollutant loadings from agricultural watersheds, however, in order to confirm it, more researches about effects of using CRF are necessary.