• Title/Summary/Keyword: pollinators

Search Result 64, Processing Time 0.021 seconds

Distributional Characteristics and Population Substantiality of Viola mirabilis L.; Rear edge Population in Korea (한국이 후방가장자리 개체군인 넓은잎제비꽃(Viola mirabilis L.)의 분포특성과 지속가능성)

  • Chae, Hyun-Hee;Kim, Young-Chul;An, Won-Gyeong;Kwak, Myoung-Hai;Nam, Gi-Heum;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.422-439
    • /
    • 2019
  • The rear edge population is considered to have low genetic diversity and high risk of extinction according to a highly isolated distribution. However, the rear edge population is observed to have persisted for an extended period despite the low genetic diversity. As such, it is necessary to understand the ecological process involved in the persistence of the population. Viola mirabilis L. in Korea is considered the rear edge population from the perspective of the worldwide distribution. We surveyed the distribution range of V. mirabilis, which shows the isolated distribution in the central area of Korea, to find out the factors of its persistence. Next, we investigated and accessed the vegetational pattern of habitats, soil environment, phenology, self-compatibility, population structure, and extinction risk factors observed in the distribution area. V. mirabilis was distributed in the understory of the deciduous forest, planted forest of the deciduous conifer and deciduous broad-leaved trees, shrubland, and grassland in the limestone area. We also observed the re-establishment of seedlings in the population, and most of them showed a stable population structure. For chasmogamous flowers, the visit by pollinators has a significantly positive relationship with the production of fruits. However, we found that the production of the cleistogamous flowers was more numerous in all studied populations and that only the cleistogamous flowers were produced despite a more substantial plant size in some populations. The plant size was more related to the production of the cleistogamous flowers than that of the chasmogamous flowers. Accordingly, the cleistogamous flowers significantly contributed to seedling recruitment in the population. We found that the production of the chasmogamous flowers and the cleistogamous flowers did not have a correlation with the factors of the soil analysis except for phosphoric acid. V. mirabilis showed the self-incompatibility characteristics most likely due to the production capability of the cleistogamous flowers. Potential extinction risk factors observed in the distribution area was included the development of limestone mine, the expansion of agricultural fields, and the construction of houses. Although V. mirabilis showed an isolated distribution in the limestone area in the Korean peninsula, it showed a diverse distribution in a wide habitat environment ranging from the grassland to the understory of the trees with relatively low canopy closure rate. Moreover, we concluded that the persistence of the population was possible if we can maintain the current state of multiple populations and stable population structure.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

Determination of Fire Blight Susceptibility on Wild Rosaceae Plants in Korea by Artificial Inoculation (인공접종을 통한 국내 야생 장미과 식물의 화상병 감수성 검정)

  • In Woong Park;Yu-Rim Song;Eom-Ji Oh;Yoel Kim;In Sun Hwang;Mi-Jin Jeon;Chorong Ahn;Jin-Suk Kim;Soonok Kim;Chang-Sik Oh
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.23-38
    • /
    • 2023
  • The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020-2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF