• Title/Summary/Keyword: polishing processing degree

Search Result 5, Processing Time 0.025 seconds

Planarization of Multi-level metal Structure by Chemical Mechanical Polishing (CMP 공정을 이용한 Multilevel Metal 구조의 평탄화 연구)

  • 김상용;서용진;김태형;이우선;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.456-460
    • /
    • 1997
  • As device sizes are scaled to submicron dimensions, planarization technology becomes increasing1y important, both during device fabrication and during formation of multilevel interconnects and wiring. Chemical Mechanical Polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. This paper is presented the results of CMP process window characterization studies for 0.35 micron process with 6 metal layers.

  • PDF

A Study for Global Planarization of Mutilevel Metal by CMP (Chemical Mechanical Polishing (CMP) 공정을 이용한 Mutilevel Metal 구조의 광역 평탄화에 관한 연구)

  • 김상용;서용진;김태형;이우선;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1084-1090
    • /
    • 1998
  • As device sizes are scaled down to submicron dimensions, planarization technology becomes increasingly important for both device fabrication and formation of multilevel interconnects. Chemical mechanical polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. The polishing process has many variables, and most of which are not well understood. The factors determine the planarization performance are slurry and pad type, insert material, conditioning technique, and choice of polishing tool. Circuit density, pattern size, and wiring layout also affect the performance of a CMP planarization process. This paper presents the results of studies on CMP process window characterization for 0.35 micron process with 5 metal layers.

  • PDF

The Evaluation on the frequency Characteristics of the Optical Glass Lens by Resonant Ultrasound Spectroscopy (RUS법에 의한 광학기기용 렌즈의 주파수 특성평가)

  • Yang, In-Young;Kim, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • The optical glass lens is required high dimensional precision such as the lack of defect. In this paper, we examined the detectable defect by using the resonant ultrasound spectroscopy(RUS). The RUS is the measurement system which is to excite the specimen and to inspect the differences of resonant frequency pattern between acceptable specimen and specimen which has some defects. In this paper, for nondestructive evaluation by using RUS, we measured the resonant frequency of each specimen which is spherical and aspherical glass lens. With the results, we knew the polishing processing degree of spherical glass lens by the measured resonant frequency and could evaluate the characteristic of aspherical glass lens about some flaws.

A study on the Digital contents for Estimated Thickness Algorithm of Silicon wafer (실리콘웨이퍼 평탄도 추정 알고리즘을 위한 디지털 컨덴츠에 관한 연구)

  • Song Eun-Jee
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • The flatness of a silicon wafer concerned with ULSI chip is one of the most critical parameters ensuring high yield of wafers. That is necessary to constitute the circuit with high quality for he surface of silicon wafer, which comes to be base to make the direct circuit of the semiconductor, Flatness, therefore, is the most important factor to guarantee it wafer with high quality. The process of polishing is one of the most crucial production line among 10 processing stages to change the rough surface into the flatnees with best quality. Currently at this process, it is general for an engineer in charge to observe, judge and control the model of wafer from the monitor of measuring equipment with his/her own eyes to enhance the degree of flatness. This, however, is quite a troublesome job for someone has to check of process by one's physical experience. The purpose of this study is to approach the model of wafer with digital contents and to apply the result of the research for an algorithm which enables to control the polishing process by means of measuring the degree of flatness automatically, not by person, but by system. In addition, this paper shows that this algorithm proposed for the whole wafer flatness enables to draw an estimated algorithm which is for the thickness of sites to measure the degree of flatness for each site of wafer.

  • PDF

Studies on the Utilization of Naked Barley Flour (I) (맥분(麥粉)의 이용(利用)에 관한 연구(硏究) (I))

  • Kim, Hyong-Soo;Lee, Ki-Yull;Choi, E-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.77-83
    • /
    • 1972
  • In order to study the processing adaptability of naked barley, SEDOHADAKA variety produced in Cheolanam-do(1971) was milled after polishing and examined with respect to its proximate principles, amino acid composition, viscosity, raising power, and amylose content, alkali number, blue value and X-ray diffraction pattern of its starch. The results are summarized as fllows: 1) Crude fiber content of naked barley which was milled at 81.6% (A), 79.2% (B) and 74.1% (C) was $2.48{\sim}2.36%$, indicating higher level than wheat flour. 2) Whereas the initial gelatinization temperature of naked barley flour was similar to that of wheat flour, the value of naked barley starch was $89.5^{\circ}C$, higher than that of wheat starch, Amylose content of naked barley starch was 28.5%, similar to wheat starch. 3) Raising power of naked barley starch was generally lower than that common cereal starches. 4) According to the X-ray diffraction pattern diagram, the degree of crystallization was lower in naked barley starch than in non-glutinous rice starch.

  • PDF