• 제목/요약/키워드: pole climbing robot

검색결과 4건 처리시간 0.032초

머니퓰레이터를 장착한 무선통신 나선형 기둥등반로봇 (A Wireless-Communicated Spirally Column-Climbing Robot with a Manipulator)

  • 이석우;하성민;강철구
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.213-222
    • /
    • 2015
  • This paper presents a column-climbing robot with a mechanical manipulator, which can spirally go up and down a column using wheels. The developed robot can do useful works using the manipulator at the top of a column, e.g., electric pole while communicating wirelessly with an operator panel. It is driven using a battery without any power cables, and the average duration of power is at least one hour. The robot has a function to detect a work object using an optical sensor installed at the bottom of the manipulator. The spirally column-climbing robot developed is demonstrated by experimental works and also by showing it at an exhibition.

해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구 (Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures)

  • 임은철;고진환
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.

계단 승월용 이동로붓의 구동모터 제작을 위한 TFM의 3D 시뮬레이션 (TFM 3D Simulation to design an actuator for Mobile Robot climbing stairs)

  • 윤상석;김승호;최창환;김철수;박기환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.75-78
    • /
    • 2003
  • Mobile Robot climbing stairs needs high power and high efficiency. one of the high power type motor is Transverse Flux Motor (TFM). Moreover, TFM is a high force density per volume. We analyzed a characteristic for the TFM and simulated the parametric research of the TPM by using 3D FEM solutions. It presents to design the basis of the TPM. design parameters are Radius of outer rotor, pole height, pole depth, pole depth, airgap, and Magnetomotive force.

  • PDF