• Title/Summary/Keyword: polarized light emission

Search Result 21, Processing Time 0.033 seconds

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.

Polarization Distortion and Compensation of Circularly Polarized Emission from Chiral Metasurfaces

  • Yeonsoo Lim;In Cheol Seo;Young Chul Jun
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Circularly polarized (CP) emission can be achieved by integrating emissive materials into chiral metasurfaces. Such CP light sources in integrated device platforms are desirable for important potential applications. However, the exact characterization of the polarization state in CP emission may include some errors because of the unwanted polarization distortion caused by optical components (e.g., beam splitter) in the optical setup. Here, we consider CP emission measurements from chiral metasurfaces and characterize the polarization distortion caused by the beam splitter. We first detail the procedures for the Stokes parameters and Mueller matrix measurements. Then, we directly measure the Mueller matrix of the beam splitter and retrieve the original polarization state of CP emission from our metasurface sample. Using the measured Mueller matrix of the beam splitter, we specifically identify what contributes to polarization distortion in CP emission. Our work may provide useful guidelines for the characterization and compensation of polarization distortion in general Stokes parameter measurements.

Emission of spin-polarized light in GaN-based spin LEDs (GaN계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Yoon, Suk-Ho;Park, Yong-Jo;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.150-152
    • /
    • 2005
  • We investigated the fabrication and characteristics of spin-polarized LEDs based on GaN using (Ga,Mn)N as spin injection source. (Ga,Mn)N thin films were found to exhibit the ferromagnetic ordering above room temperature and the negative MR up to room temperature. The electrical characteristics in spin LEDs did not degraded in spite of the insertion of (Ga,Mn)N films. In EL spectra of spin LEDs, it is confirmed that spin LEDs emit the strong light at 7 K as well as room temperature. These results suggest that it is possible to emit spin-polarized light in our spin LEDs.

  • PDF

Polarization Phase-shifting Technique for the Determination of a Transparent Thin Film's Thickness Using a Modified Sagnac Interferometer

  • Kaewon, Rapeepan;Pawong, Chutchai;Chitaree, Ratchapak;Bhatranand, Apichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.474-481
    • /
    • 2018
  • We propose a polarization phase-shifting technique to investigate the thickness of $Ta_2O_5$ thin films deposited on BK7 substrates, using a modified Sagnac interferometer. Incident light is split by a polarizing beam splitter into two orthogonal linearly polarized beams traveling in opposite directions, and a quarter-wave plate is inserted into the common path to create an unbalanced phase condition. The linearly polarized light beams are transformed into two circularly polarized beams by transmission through a quarter-wave plate placed at the output of the interferometer. The proposed setup, therefore, yields rotating polarized light that can be used to extract a relative phase via the self-reference system. A thin-film sample inserted into the cyclic path modifies the output signal, in terms of the phase retardation. This technique utilizes three phase-shifted intensities to evaluate the phase retardation via simple signal processing, without manual adjustment of the output polarizer, which subsequently allows the thin film's thickness to be determined. Experimental results show that the thicknesses obtained from the proposed setup are in good agreement with those acquired by a field-emission scanning electron microscope and a spectroscopic ellipsometer. Thus, the proposed interferometric arrangement can be utilized reliably for non-contact thickness measurements of transparent thin films and characterization of optical devices.

Polarized Light Emission of Liquid Crystalline Polymer Blends (액정성 고분자 블렌드의 편발광)

  • 김영철;조현남;김동영;홍재민;송남웅
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • Fluorene-based light emitting polymer blends with liquid crystalline characteristics were studied on effective energy transfer and dichroic characteristics. Incorporating 0.5 wt% of the non-liquid crystalline into the liquid crystalline polymer suppressed the PL emission at 420 nm on photoexcitation at 360 nm, but generated a new PL emission of the non-liquid crystalline polymer at 480 nm. The highest PL intensity at 480 nm, which was 13 times stronger than those of the two polymers before blending, was observed for a blend with 2.0 wt% of the non-liquid crystalline polymer. When the molecules of the blends were aligned on a rubbed polyimide surface by a heating-cooling process, the dichroic ratio and the order parameter were 2.0 and 0.25, respectively. Time-correlated single photon counting (TCSPC) study revealed that the time required for energy transfer between the two chromophores was shortened by 93 ps when the blends were aligned on the rubbed polyimide surface by the heating-cooling process. The thermal treatment also enhanced the energy transfer efficiency by 9%.

  • PDF

Optical properties of a-plane InGaN/GaN multi-quantum wells with green emission

  • Song, Hoo-Young;Kim, Eun-Kyu;Lee, Sung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.172-172
    • /
    • 2010
  • In the area of optoelectronic devices based on GaN and related ternary compounds, the two-dimensional system like as quantum wells (QWs) has been investigated as an effective structure for improving the light-emitting efficiency. Generally, the quantum well active regions in III-nitride light-emitting diodes grown on conventional c-plane sapphire substrates have critical problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. However, the QWs grown on nonpolar templates are free from the QCSE since the polar-axis lies within the growth plane of the template. Also the unique characteristic of linear polarized light emission from nonpolar QW structures is attracting attentions because it is proper to the application of back-light units of liquid crystal display. In this study, we characterized optical properties of the a-plane InGaN/GaN QW structures by temperature-dependent photoluminescence (TDPL) measurements. From the photoluminescence (PL) spectrum measured at 300 K, green emission centered at 520 nm was observed for the QW region. Since indium incorporation on nonpolar QWs is lower than that on c-plane, this high indium-doping on a-plane InGaN QWs is not common. Therefore, the effect of high indium composition on optical properties in a-plane InGaN QWs will be extensively studied.

  • PDF

Polymer Light-Emitting Diodes Based on Poly(3-hexyl thiophene)

  • Chang, Seoul;Kim, Nam-Hee
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • Poly(3-hexyl thiophene)(P3HT) and poly(3-dodecyl thiophene)(P3DT) were polymerized by oxidative coupling with ferric chloride. The P3HT light-emitting device emitted red light and it could be observable in the ordinary indoor light. The device had the turn-on electric field of about 3$\times$$10^7$ V/m. The maximum electroluminescene (EL) intensity was obtained when the thickness of polymer layer was about 130 nm in IT0/P3HT/Al device. The maximum external quantum yield was 0.002%. The maximum luminance was 21 cd/$m^2$. The EL intensity decreases with increasing the crystallinity of the polymer layer. By using the oriented poly(3-alkyl thiophene)(PAT) layer as an electroluminescent layer in the ITO/polymer/Al light-emitting devices, the polarized EL light emission was observed. The EL intensity ratio of parallel to perpendicular direction to the stretch direction for P3HT was about 1.40.

  • PDF

Mass constraints of coronal mass ejection plasmas observed in EUV and X-ray passbands

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Coronal mass ejection (CME) plasmas have been observed in EUV and X-ray passbands as well as in white light. Mass of CME has been determined using polarized brightness observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board Solar and Heliospheric Observatory (SOHO). Therefore, this mass obtained from the LASCO observation indicates the total CME mass. However, the mass of CME plasma in different temperatures can be determined in EUV and X-ray passbands using observations by SOHO/EIT, STEREO/EUVI, and Hinode/XRT. Prominence/CME plasmas have been observed as absorption or emission features in EUV and X-ray passbands. The absorption features provide a lower limit to cold mass. In addition, the emission features provide an upper limit to the mass of plasmas in temperature ranges of EUV and X-ray. We determine the mass constraints using the emission measure obtained by assuming the prominence/CME structures. This work will address the mass constraints of hot and cold plasmas in CMEs, comparing to total CME mass.

  • PDF

Dynamics of RNA Bacteriophage MS2 Observed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung Sook;Yoon, Ji Hye
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • [Ru(2,2'-bipyridine)$_2$(4,4'-dicarboxy-2,2'-bipyridine)]$^{2+}$(RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. To evaluate the usefulness of this luminophore (RuBDc) for studying macromolecular dynamics, its intensity and anisotropy decays when conjugated to RNA bacteriophage MS2 were examined using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and the mean intensity decay time was 442.2 ns. The anisotropy decay data showed a single rotational correlation time (2334.9 ns), which is typical for a spherical molecule. The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc can be useful for studying rotational diffusion of biological macromolecules.s.

  • PDF

DYNAMICS OF $tRNA*{val}$ MEASURED WITH A LONG-LIFETIME METAL-LIGAND COMPLEX

  • Kang, Jung-Sook
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.155-159
    • /
    • 2000
  • [Ru(bpy)$_2$(dppz)]$^2$$^{+}$ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine)(RuBD), a long-lifetime metal-ligand complex displays photophysical properties including long lifetime, polarized emission, and very little background fluorescence. To further show the usefulness of this luminophore(RuBD) for probing nucleic acid dynamics, its intensity and anisotropy decays when bound to tRN $A^{val}$ were examined using frequency-domain fluorometry with a blue light-emitting diode(LED)as the modulated light source. Unexpectedly much longer mean lifetime was obtained at 4$^{\circ}C$(<$\tau$>=178.3 ns) as compared to at $25^{\circ}C$(<$\tau$>=117.0 ns), suggesting more favorable conformation of tRN $A^{val}$ for RuBD when intercalated at 4$^{\circ}C$. The anisotropy decay data showed longer rotational correlation times at 4$^{\circ}C$(52.7 and 13.0 ns) than at $25^{\circ}C$ (32.9 and 10.3 ns). The presence of two rotational correlation times suggests that RuBD reveals both local and overall rotational motion of tRN $A^{val}$. Due to long lifetime of RuBD and small size of tRN $A^{val}$, very low steady-state anisotropy values were observed, 0.048 and 0.036 at 4 and $25^{\circ}C$, respectively. However, a clear difference in the modulated anisotropy values was seen between 4 and $25^{\circ}C$. These results indicate that RuBD can be useful for studying hydrodynamics of small nucleic acids such as tRN $A^{val}$.^{val}$.>.$.>.

  • PDF