• Title/Summary/Keyword: polarization index

Search Result 176, Processing Time 0.021 seconds

Estimation of Corn Growth by Radar Scatterometer Data

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Na, Sangil;Jung, Gunho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Ground-based polarimetric scatterometers have been effective tools to monitor the growth of crop with multi-polarization and frequencies and various incident angles. An important advantage of these systems that can be exploited is temporal observation of a specific crop target. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. We analyzed the relationships between L-, C- and X-band signatures, biophysical measurements over the whole corn growth period. The Vertical transmit and Vertical receive polarization (VV) backscattering coefficients for all bands were greater than those of the Horizontal transmit and Horizontal receive polarization (HH) until early-July, and then thereafter HH-polarization was greater than VV-polarization or Horizontal transmit and Vertical receive polarization (HV) until the harvesting stage (Day Of Year, DOY 240). The results of correlation analysis between the backscattering coefficients for all bands and corn growth data showed that L-band HH-polarization (L-HH) was the most suited for monitoring the fresh weight ($r=0.95^{***}$), dry weight ($r=0.95^{***}$), leaf area index ($r=0.86^{**}$), and vegetation water content ($r=0.93^{***}$). Retrieval equations were developed for estimating corn growth parameters using L-HH. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. Those results can be useful in determining frequency and polarization of satellite Synthetic Aperture Radar stem and in designing a future ground-based microwave system for a long-term monitoring of corn.

Diagnostic Test of XLPE Ultra High Voltage Electric Power Cable (XLPE 특고압 전력케이블의 절연 진단)

  • Byun, Doo-Gyoon;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.122-126
    • /
    • 2002
  • A diagnostic test of 15.4kV cross-linked polyethylene(XLPE) ultra high voltage power cables from generator in the Soyanggang hydro electric power plant was conducted over 3 months, beginning April 2001. According to the results, in the case of the power cables from generator 1, there was little possibility of proceeding rapid1y to failure or defect because the data from diagnosis doesn't indicate any failure, deterioration or partial discharge. However, in the case of the power cables from generator 2, the. polarization index show a slight abnormal condition of the insulator that is not severe, and the deterioration was also identified as not severe. However, the partial discharge had an abnormal condition which was severe.

  • PDF

Optical Triangular Waveform Generation with Alterable Symmetry Index Based on a Cascaded SD-MZM and Polarization Beam Splitter-combiner Architecture

  • Dun Sheng Shang;Guang Fu Bai;Jian Tang;Yan Ling Tang;Guang Xin Wang;Nian Xie
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.574-581
    • /
    • 2023
  • A scheme is proposed to generate triangular waveforms with alterable symmetry. The key component is a cascaded single-drive Mach-Zehnder modulator (SD-MZM) and optical polarization beam splitter-combiner architecture. In this triangular waveform generator, the bias-induced phase shift, modulation index and controllable delay difference are changeable. To generate triangular waveform signals with different symmetry indexes, different combinations of these variables are selected. Compared with the previous schemes, this generator just contains one SD-MZM and the balanced photodetector (BPD) is not needed, which means the costs and energy consumption are significantly reduced. The operation principle of this triangular waveform generator has been theoretically analyzed, and the corresponding simulation is conducted. Based on the theoretical and simulated results, some experiments are demonstrated to prove the validity of the scheme. The triangular waveform signals with a symmetry factor range of 20-80% are generated. Both experiment and theory prove the feasibility of this method.

Origin of Decreasing the Dielectric Constant and the Effect of Ionic Polarization (유전상수가 낮아지는 원인과 이온 분극의 효과)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.453-458
    • /
    • 2009
  • SiOC film was deposited by the chemical vapor deposition using BTMSM and oxygen mixed precursor. The characteristic of SiOC film varied with increasing of the gas flow rate ratios. The dielectric constant was obtained by C-V measurement using the structure of metal/SiOC film/Si. The space effect due to the steric hindrance between alkyl group at terminal bond of Si-$CH_3$ made the pores, and increased the thickness. However, the SiOC film due to the lowering of the polarization decreased the thickness and then decreased the dielectric constant. After annealing process, the dielectric constant decreased because of the evaporation of the OH or $H_2O$ sites. The thickness was related to the lowering of the dielectric constant by the reduction of the polarization and the thickness decreased with the decrease of the dielectric constant. The refractive index was in inverse proportion to thickness. The trends of the thickness and refractive index did not change after annealing.

Transmission Characteristics of Long-Period Fiber Gratings Using Periodically Corroded Single-Mode Fibers

  • Lee, Jonghwan;Bang, Ngac An;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.376-381
    • /
    • 2015
  • Transmission characteristics of long-period fiber gratings (LPFGs) fabricated by periodically etching a conventional single-mode fiber (SMF) are investigated. After coating the SMF with photoresist, the cladding of the SMF is symmetrically and periodically removed by using a wet etching technique resulting in the formation of the LPFG. Tensile strain reinforces the coupling strength between the core and the cladding mode based on the photoelastic effect. The extinction ratio of the SMF-based LPFG at a wavelength of 1550.8 nm is measured to be -15.1 dB when the applied strain is $600{\mu}{\varepsilon}$. The ascent of ambient index shifts the resonant wavelength to shorter wavelength because of the increase of the effective refractive index of the cladding mode. The extinction ratio is diminished by increase in the ambient index because of the induction of the optical attenuation of the cladding mode. The transmission characteristics of the proposed LPFG with variations in torsion are also measured. The photoelastic effect based on torsion changes the extinction ratio and the resonant wavelength of the proposed SMF-based LPFG. The polarization-dependent loss of the LPFG is also increased by torsion because of the torsion-induced birefringence. The polarization-dependent loss of the LPFG at torsion of 8.5 rad/m is measured to be 3.9 dB.

Digital Color Imaging Systems for Quantitative Evaluation of Skin Lesions (피부병변의 정량적 평가를 위한 디지털 컬러 영상 시스템)

  • Han, Byung-Kwan;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.195-198
    • /
    • 2007
  • In this paper, we introduce a digital cross-polarization and fluorescent color imaging system for quantitative evaluation of skin lesions. We describe the characterization of the imaging systems and the quantitative image analysis methods to show the feasibility for quantitative evaluation of skin lesions. The polarization color image was used to compute erythema and melanin index image which are useful for quantitative evaluation of pigmentation and vascular skin lesions, respectively. The fluorescent color image was used to quantitatively evaluate "sebum" and "vitiligo". In quantitative evaluation of various skin lesions, we confirmed the clinical efficacy of the imaging systems for dermatological applications. Finally, we sure that the imaging systems can be utilized as important assistant tools for the evaluation of skin lesions by providing reproducible quantitative result for widely distributed skin lesions.

Wavelength and polarization selectivity of a side-polished fiber contacted with a metal-clad planar waveguide (금속 클래드 평면 도파로와 결합된 측면 연마 광섬유의 파장 및 편광 선택성)

  • 김광택;황중호;이준옥;김철호;황보승
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.134-139
    • /
    • 2002
  • We report an experimental investigation of the wavelength and polarization selectivity of a side-polished fiber in contact with a metal-clad planar waveguide. The influences of the structural parameters of the planar waveguide, including refractive index of the superstrate and metal thickness, on the optical transmission characteristics of the device were measured and explained. The conditions for high wavelength and polarization selectivity wore predicted and demonstrated experimentally.

A Study on Polarization Mode Dispersion Properties of Concatenated Optical Fibers (이종 접합된 광섬유에 있어서 편광모드분산 특성에 관한 연구)

  • Lee, Cheong-Hak;Ryu, Boo-Hyung;Kim, Kee-Dae;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2456-2458
    • /
    • 1999
  • The polarization mode dispersion (PMD) that restricts the transmission bandwidth was investigated in standard long single mode fiber which optimized at 1.3${\mu}m$. Although fiber has perfect circular symmetry, each optical fiber has different refractive index profiles. The investigation of PMD with random mode couplings were conducted in three kinds of fiber by the time-domain interferometric method. By using two manufacturing methods, MCVD(Modified Chemical Vapor Deposition) method and VAD(Vapor Phase Axial Deposition) method, the property of mechanical asymmetric lateral pressure, bending and twisting induced polarization mode dispersion were measured. The concatenated optical fibers were compared with other types.

  • PDF

Investigation of Resonant Wavelength Separation in Microband-induced Fiber Gratings

  • Sohn Kyung-Rak;Shim Joon-Hwan;Kim Kwang-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.63-66
    • /
    • 2006
  • In microband-induced fiber gratings, polarization properties and birefringence are investigated as a function of an applied line force. With the transmission curves associated with the maximum and minimum resonant wavelengths, the polarization-dependent behaviors are analyzed. By increasing the transverse line force, the resonance wavelength for an incident light polarized to the same direction of the force is blue-shifted as much as 0.69 nm/(N/cm) while that for the other polarization is insensitive. Using the resonant wavelength separation corresponding to the force variation, the transverse effective index change or modal birefringence variation is obtained. The ratio of modal birefringence versus applied line force is ${\Delta}B/{\Delta}f_x={\sim}8.38{\times}10^{-7}$.