• Title/Summary/Keyword: polar energy

Search Result 340, Processing Time 0.023 seconds

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

Photo-oxidation and Dyeability of Poly Ketone by UV/O3 Irradiation (자외선/오존 조사에 의한 Poly Ketone의 광산화와 염색성)

  • Kim, Min-Su;Jang, Yong-Joon;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Poly ketone (PK) was photo-oxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PK film was investigated by the measurement of reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance, particularly at the wavelength of 380nm, decreased with increasing UV energy. And the irradiation produced nano-scale roughness on the surface uniformly. The maximum surface roughness increased from 25.3nm for the unirradiated sample to 104.9nm at the irradiation of $42.4J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The surface energy of PK film increased from $43.3mJ/m^2$ for the unirradiated sample to $71.9mJ/m^2$ at the irradiation of $31.8J/cm^2$. The zeta potential of the UV-irradiated PK decreased with increased UV energy and the dyeability to cationic dyes increased accordingly, resulting from the photochemically introduced anionic and dipolar dyeing sites on the PK films surfaces.

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

Sur face Modification of Ultra High Molecular Weight Polyethylene Films by UV/ozone Ir radiation

  • Yun, Deuk-Won;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • Ultra High molecular weight polyethylene(UHMWPE) films were photooxidized by UV/ozone irradiation. Reflectance of the irradiated films decreased in the low wavelength regions of visible light, indicating destructive interference of visible light due to roughened surface. The UV treatment developed the nano-scale roughness on the UHMWPE films surface, which increased by two-fold from 82.6 to 156.6nm in terms of peak-valley roughness. The UV irradiation caused the oxygen content of the UHMWPE film surface to increase. Water contact angle decreased from $83.2^{\circ}$ to $72.9^{\circ}$ and surface energy increased from 37.8 to 42.6mJ/$m^2$ with increasing UV energy. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of UHMWPE films. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the film surfaces.

Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik;Lee, Jeong-Woo;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.409-417
    • /
    • 2005
  • The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

Implementation of DC/DC Power Buck Converter Controlled by Stable PWM (안정된 PWM 제어 DC/DC 전력 강압 컨버터 구현)

  • Lho, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.371-374
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different stable DC input sources regulated by a bi-polar transistor. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The voltage mode DC/DC converter is composed of a PWM (Pulse Width Modulation) controller, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an inductor, and capacitors, etc. PWM is applied to control and regulate the total output voltage. It is shown that the output of DC/DC converter depends on the variation of threshold voltage at MOSFET and the variation of pulse width. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by SPICE (Simulation Program with Integrated Circuit Emphasis) and experiments.

Radio iodination (II) Radio iodination of various aromatic derivatives in organic solvent at low temperature (放射性 요오드化 反應 (第 II 報) 有機容媒 中에서의 各種 芳香誘導體의 低溫 요오드化 反應)

  • Kim, You-Sun;Kim, Chong-Doo
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.35-38
    • /
    • 1968
  • Radio iodination of various aromatic derivatives (aniline, toluene, iodobenzene, acetanilide, benzene, benzoic acid) were achieved at low temperature by a chloroamine-T procedures in presence of polar solvent(dioxane). Organic base (piperidine) was used as the catalyst. Iodine replacement reaction had occured on the aromatic or alicyclic ring by this reaction, and the kind and ratio of iodinated products were proved to be different from those of usual iodide reaction in organic solvent at low temperature. The reactivity of various aromatic or alicyclic compounds towards the present iodination system was evaluated and the scope and limitation of the present procedures in the preparation of radio pharmaceuticals were discussed.

  • PDF

A Thin Circular Beam Finite Element for Out-of-plane Vibration Analysis of Curved Beams (곡선 보의 면외 진동해석을 위한 얇은 원형 보 유한요소)

  • Kim, Chang-Boo;Kim, Bo-Yeon;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1598-1606
    • /
    • 2007
  • In this paper, we present a thin circular beam finite element for the out-of-plane vibration analysis of curved beams. The element stiffness matrix and the element mass matrix are derived respectively from the strain energy and the kinetic energy by using the natural shape functions which are obtained from an integration of the differential equations of the finite element in static equilibrium. The matrices are formulated with respect to the local polar coordinate system or to the global Cartesian coordinate system in consideration of the effects of shear deformation and rotary inertias. Some example problems are analysed. The FEM results are compared with the theoretical ones to show that the presented finite element can describe quite efficiently and accurately the out-of-plane motion of thin curved beams.

  • PDF

Numerical and Experimental Analysis of Pressure Drop in a Bipolar Plate channel of a Proton Exchange Membrane Fuel Cell (연료전지 분리판 압력손실 감소를 위한 수치해석 및 실험적 연구)

  • Kim, Hee-Su;Kang, Kyung-Tae;Choi, Yun-Ki;Lee, Su-Dong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • Fuel cell makes electricity through chemical reaction. Bipolar-plate distribute hydrogen, oxidation using channel geometry condensation of water vapor inside channels of bipolar-plates lowers efficiency of fuel cell. Usually high pressured gas supply is used to solve the water condensation problem with serpentine type channel geometry. In this study, a new channel geometry shows feasible to minimize lowering efficiency due to water condensation through numerical and experimental analysis.

Novel Properties of Boron Added Amorphous Rare Earth-transition Metal Alloys for Giant Magnetostrictive and Magneto-optical Recording Materials

  • Jai-Young Kim
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.78-81
    • /
    • 1998
  • Large magneto crystalline anisotropy energy and demagnetization energy of rare earth-transition metal (RF-TM) alloys play roles of bottlenecks towards their commercial applications for giant magnetostrictive and blue wavelength magneto optical recording materials, respectively. To solve the above problems, boron is added into amorphous RE-TM alloys to produce its electron transferring. The boron added amorphous RE-TM alloys show novel magnetic and magneto-optical properties as follows; 1) an amorphous $(Sm_{33}Fe_{76})$97B3 alloy obtains the magnetostriction of$ -550{times}10^{-6}$ at 400 Oe compared with saturation magnetostriction of$ -60{\times}10^{-6}$ in conventional Ni based alloys, 2) an amorphous$ (Nd_{33}Fe_{67})_{95}B_5$ alloy increases effective magnetic anisotropy to$ -0.5{\times}10^{-6} ergs/cm^3 from -3.5{\times}10^6 ergs/cm^3$ without boron, which correspond to the polar Kerr rotation angles of 0.52$^{\circ}$and 0.33$^{\circ}$, respectively. These results attribute to selective 2p-3d electron orbits exchange coupling (SEC).

  • PDF