• 제목/요약/키워드: polar climate variation

검색결과 47건 처리시간 0.022초

다중 GPS를 이용한 변위거동 연구

  • 손호웅;이강원;박은호
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2009년도 춘계학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 2009
  • Global warming melts polar ice, changes ocean currents, creates variation of local climate, and inundates low-altitude regions resulting in disasters to mankind. Accordingly, developed countries including U.S.A. and U.K. spend great amounts of efforts and money to plan and manage research activities on polar ice which is regarded as a key indicator of climate change. The proposed research aims to provide basic information for chasing and monitoring the melting phenomena of polar ice through multiple GPS to enhance the GPS quality.

  • PDF

한국기상학회 기후역학 분야 학술 발전 현황 (Academic Development Status of Climate Dynamics in Korean Meteorological Society)

  • 안순일;예상욱;서경환;국종성;김백민;김대현
    • 대기
    • /
    • 제33권2호
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

동중국해 표층수온의 장기 변동성: 종설 (Long-term Variability of Sea Surface Temperature in the East China Sea: A Review)

  • 이재학;김철호
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.171-179
    • /
    • 2013
  • The long-term variability of sea surface temperature in the East China Sea was reviewed based mainly on published literatures. Though the quantitative results are not the same, it is generally shown that sea surface temperature is increasing especially in recent years with the rate of increase about $0.03^{\circ}C$/year. Other meaningful results presented in the literatures is that the difference of water properties between layers upper and lower than the thermocline in summer shows an increasing trend both in temperature and salinity, suggesting that the stratification has been intensified. As a mechanism by which to evaluate the wintertime warming trend in the region, the weakening of wind strength, which is related to the variation of sea level pressure and atmospheric circulation in the western North Pacific and northern Asian continent, is suggested in the most of related studies.

KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류 (Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery)

  • 김상일;김현철;신정일;홍순규
    • 대한원격탐사학회지
    • /
    • 제29권5호
    • /
    • pp.537-544
    • /
    • 2013
  • 남극 세종 과학 기지가 위치하고 있는 바톤반도는 눈과 식생이 주를 이루고 있고, 기후변화와 같은 환경변화에 민감하게 반응한다. 극지역의 지표 모니터링은 기후변화 이해를 위해 중요하다. 그러나 극 지역은 접근성 및 공간규모로 인해 지속적으로 모니터링 하기에 어려움이 있다. 위성영상은 지속적으로 동일지역을 모니터링 할 수 있다는 장점과 함께 다중분광영역을 이용하여 지표의 상태를 파악하는데 효율적이다. 따라서 본 연구에서는 바톤반도의 지표의 상태를 지속적으로 모니터링하기 위한 기초자료로 KOMPSAT-2 다중 분광 위성영상을 이용하여 토지피복분류를 수행하였고, 나아가 분류된 토지피복 중 식생 종의 분포를 파악하였다. 다중분광영상인 KOMPSAT-2 위성영상과 현장관측자료를 이용하여 계층적 분류를 수행하였고 정확도를 평가하였다. 전반적으로 식생지역과 비식생 지역이 명확하게 분류되었으나 식생 종 분류에는 낮은 정확도를 보였다.

남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화 (Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean)

  • 장양희;김부근;신형철;;;홍창수
    • Ocean and Polar Research
    • /
    • 제30권4호
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

2006년과 2007년 여름에 관측한 Hawaii-Chuuk 사이의 물리특성 (Physical Oceanographic Characteristics between Hawaii and Chuuk Observed in Summer of 2006 and 2007)

  • 신창웅;김동국;전동철;김응
    • Ocean and Polar Research
    • /
    • 제33권spc3호
    • /
    • pp.371-383
    • /
    • 2011
  • To investigate the physical characteristics and variations of oceanic parameters in the tropical central North Pacific, oceanographic surveys were carried out in summer of 2006 and 2007. The survey periods were classified by Oceanic Ni$\tilde{n}$o Index as a weak El Ni$\tilde{n}$o in 2006 and a medium La Ni$\tilde{n}$a in 2007. The survey instruments were used to acquire data on CTD (Conductivity Temperature and Depth), XBT (Expendable Bathythermograph), and TSG (Thermosalinograph). The dominant temporal variation of surface temperature was diurnal. The diurnal variation in 2007, when the La Ni$\tilde{n}$a weather pattern was in place, was stronger than that in 2006. Surface salinity in 2006 was affected by a northwestward branch of North Equatorial Current, which implies that the El Ni$\tilde{n}$o affects surface properties in the North Equatorial Current region. Two salinity minimum layers existed at stations east of Chuuk in both year's observations. The climatological vertical salinity section along $180^{\circ}E$ shows that the two salinity minimum layers exist in $2^{\circ}N{\sim}12^{\circ}N$ region, consistent with our observations. Analysis of isopycnal lines over the salinity section implies that the upper salinity minimum layer is from intrusion of the upper part of North Pacific Intermediate Water into the lower part of South Pacific Subtropical Surface Water and the lower salinity minimum layer is from Antarctic Intermediate Water.

2015/16 겨울 동아시아-한반도 기후 특성 분석 (Assessment of Climate Variability over East Asia-Korea for 2015/16 Winter)

  • 정지훈;박태원;최자현;손석우;송강현;국종성;김백민;김현경;임소영
    • 대기
    • /
    • 제26권2호
    • /
    • pp.337-345
    • /
    • 2016
  • This paper is to assess the state of climate over East Asia and Korea during 2015/16 winter. There was a distinct intraseasonal climate variation during the period: the record-breaking warmth in December 2015 vs. strong cold surge outbreaks in January 2016. It is suggested that the anomalous warming in December 2015 was contributed by an intensification of Kuroshio anticyclone associated with 2015/16 El $Ni{\tilde{n}}o$ and polar vortex intensification. In January 2016, a strong cold surge outbroke over East Asia bringing severe cold more than two weeks. The cold surge was a blocking-type one which followed extremely negative AO developed from early January. It was suggested that the intensification of cold surge might be contributed indirectly by a strong Arctic warming and MJO activity during the period.

태평양-인도양 해양순환 연구 프로그램 (TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program)

  • 전동철;김응;신창웅;김철호;국종성;이재학;이윤호;김석현
    • Ocean and Polar Research
    • /
    • 제35권3호
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.