• Title/Summary/Keyword: point navigation

Search Result 829, Processing Time 0.033 seconds

A Novel Localization Algorithm using Received Signal Strength Difference

  • Lim, Deok Won;Seo, Jae-Hee;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.141-147
    • /
    • 2017
  • In this paper, an efficient and robust localization algorithm using Receiver Signal Strength Difference (RSSD) for a non-cooperative RF emitter is given. The proposed algorithm firstly calculate the center point and radius of Apollonius's circles and then estimate the intersection point of the circles based on Time of Arrival concept. And this paper also compares the performance of RSSD localization algorithms such as Non-linear Least Squares and Linearized Least Squares by Lines of Position (LOP) with the proposed algorithm. And some conclusions have been reached regarding the relative accuracy, robustness and computational cost of these algorithms.

Accuracy Analysis of Precise Point Positioning Using Predicted GPS Satellite Orbits (GPS 예측궤도력을 이용한 정밀단독측위 정확도 분석)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.752-759
    • /
    • 2012
  • In this paper, near-real-time positioning accuracies of precise point positioning technique were analyzed using IGS predicted orbits. As a result, we could get the mean errors of 1~1.6 cm, standard deviation of 1~1.3cm from one year of GPS data. This results were similar level to positioning accuracy using the IGS rapid orbits. Positioning errors of >10cm showed 44% of observed days of orbital anomalies. When the orbital anomalies of the predicted orbits were shown, maximum error was 1.7 km, and maximum of mean errors was 308 m. From this study, we conclude that check and consideration were necessary before using the IGS predicted orbits.

Improving the Performance of DR/GPS Integrated System For Land Navigation Using Sigma Point Based RHKF Filter (시그마 포인트 기반 RHKF 필터를 사용한 지상합법용 DR/GPS 결합시스템의 성능 향상)

  • Choi, Wan-Sik;Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.174-185
    • /
    • 2006
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

A Navigation Algorithm for Autonomous Mobile Robots using Artificial Immune Networks and Fuzzy Systems

  • Kim, Yang-Hyun;Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.6-134
    • /
    • 2001
  • The purpose of navigation algorithm is to reach a given target point without collision with obstacles while an autonomous mobile robot is navigating. To achieve a safe navigation, this paper presents an effective navigation algorithm for the autonomous mobile robot equipped with ultrasonic sensors in unknown environments. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The decision maker using fuzzy inference systems weights the steering angles selected ...

  • PDF

1-Point Ransac Based Robust Visual Odometry

  • Nguyen, Van Cuong;Heo, Moon Beom;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2013
  • Many of the current visual odometry algorithms suffer from some extreme limitations such as requiring a high amount of computation time, complex algorithms, and not working in urban environments. In this paper, we present an approach that can solve all the above problems using a single camera. Using a planar motion assumption and Ackermann's principle of motion, we construct the vehicle's motion model as a circular planar motion (2DOF). Then, we adopt a 1-point method to improve the Ransac algorithm and the relative motion estimation. In the Ransac algorithm, we use a 1-point method to generate the hypothesis and then adopt the Levenberg-Marquardt method to minimize the geometric error function and verify inliers. In motion estimation, we combine the 1-point method with a simple least-square minimization solution to handle cases in which only a few feature points are present. The 1-point method is the key to speed up our visual odometry application to real-time systems. Finally, a Bundle Adjustment algorithm is adopted to refine the pose estimation. The results on real datasets in urban dynamic environments demonstrate the effectiveness of our proposed algorithm.

An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm (면역 알고리즘을 이용한 쿼드로터 장애물회피 기술)

  • Son, Byung-Rak;Han, Chang-Seup;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.

A study of the development of Ship's Collision Risk Algorithm by Relative bearing in Closest Position of Approach(CPA) (최근접점 상대방위에 따른 선박충돌위험알고리즘 개발에 관한 연구)

  • Lee, Jin-Suk;Song, Chae-Uk;Jung, Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.47-48
    • /
    • 2015
  • VTSO make a decision which one will be danger and what to expect ship's actions due to each encountering situation with CPA(Closest Point of Approach) and TCPA(Time to Closest Point of Approach) by monitoring ship's vectors(Course & Speeds) in real-time through the VTS system. This study is the fundamental research for developing algorithm and system that does not decide the collision risk in one's own ship's viewpoints, but it identifies the related ships into danger through the third party(VTS ) in real time.

  • PDF

A Proposal of an LOS Guidance System of a Ship for Path Following (선박의 항로추종을 위한 LOS 가이던스 시스템의 제안)

  • Kim Jonghwa;Lee Byungkyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.363-368
    • /
    • 2005
  • This paper proposes an LOS(line-of-sight) guidance system of a ship for path following. From the viewpoint of a control configuration, guidance is a special type of compensation algorithm that is placed in front of the controller to accomplish navigational objects. A guidance system generates a reference trajectory for trajectory tracking or path control and decides the desired velocity, position and heading angle. A control system executes commands based on a reliable guidance law during navigation. An LOS vector from the vessel to a point on the path between two way-points in straight-line navigation or a point among turning circle in turning navigation is selected, and then a heading angle is calculated to converge the desired path based on the LOS vector. The LOS guidance law is defined for the straight-line and the turning circle, respectively. The effectiveness of the suggested LOS guidance system is assured through computer simulation.

우리나라 해역별 수중거주시설 입지조건에 관한 연구

  • Park, Sang-Uk;Lee, Han-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.28-30
    • /
    • 2020
  • 우리나라 해역은 크게 동해, 서해와 남해로 나뉜다. 해역별 특성은 공간적 및 유체역학적으로 상이하여 해역별 수중거주시설의 설계에 있어 서로 다른 주요건과 시설구성을 필요로 한다. 본 연구는 거시적 수중주거시설 설계기술 연구의 일환으로서 특히 해역별 공간 특성을 잘 갖춘 3곳의 입지 후보지(동해:Phoenix point, 남해:South Brother point와 서해:Mud point)에 대하여 요구되는 해역별 설계 환경부하를 최근 태풍Haishen, 태풍Maysak과 태풍 Bavi의 기상 예측자료 및 관측자료를 통해 비교하고 가정한 건축목표(Phoenix point: 속초시에 탈탄소 전력공급, South Brother point:부산항 수소연료 비축기지 및 해상 수소충전소, Mud point:에너지 자립형 기후중립 수산양식 기지)에 부합하도록 시설구성을 제안함으로써 우리나라 연안의 천해와 심해에서의 수중거주 가능성을 조사했다.

  • PDF