• Title/Summary/Keyword: point grid method

Search Result 379, Processing Time 0.028 seconds

Analysis of the characteristics of inertial sensors to detect position changes in a large space (넓은 공간에서 위치 변화를 감지하기위한 관성 센서의 특성 분석)

  • Hong, Jong-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.770-776
    • /
    • 2021
  • Positioning systems have been actively researched and developed over the past few years and have been used in many applications. This paper presents a method to determine a location in a large space using a sensor system consisting of an accelerometer and a single-axis gyroscope. In particular, to consider usability, a sensor device was loosely worn on the waist so that the experimental data could be used in practical applications. Based on the experimental results of circular tracks with radiuses of 1m and 3m, in this paper, an algorithm using the threshold of rotation angle was proposed and applied to the experimental results. A tracking experiment was performed on the grid-pattern track model. For raw sensor data, the average deviation between the final tracking point and the target point was approximately 15.2 m, which could be reduced to approximately 4.0 m using an algorithm applying the rotation angle threshold.

LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving (도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘)

  • Kim, Jongho;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

Measuring Water Depth by Using a Combination of GPS/Echosounder (음향측심기와 위성항법을 이용한 하천의 수심 측량)

  • 정영동;강상구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.375-381
    • /
    • 2002
  • Depth of water information is obtained mainly from echo-sounding instrument which observes the round-trip time of signal from water surface to the bottom. Photogrammetry, underwater survey and laser survey etc. are also used as another method of bathymetric surveying. These methods are used specially for making track chart in a shallow water area. On the other hand, aircraft or satellite imagery ara also used in the sea area where the effect of suspended material is low and water quality is good. Presently, general bathymetric surveying has been performed in our country, but the spatial density of surveyed point are relatively low. Therefore, in this study we built a grid water depth chart which measured combing echosounder with GPS-RTK method and the depth accuracy was analyzed by using the data of direct survey water depth. As a results, the bathymatric mapping which use echosounder is more economical method compared to the existing methods.

A Comparative Review on Building Height Regulations Using GIS Simulation (GIS Simulation을 이용한 건축높이 규제 방안의 비교검토)

  • Kim, Ho-Yong;Yun, Jeong-Mi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.129-140
    • /
    • 2013
  • This study reviewed different results according to the selection of viewpoints and considerations of the neighborhood in the analysis of view to regulate the height of buildings. To do this, 4 cases were set according to the analytical methodology and a GIS simulation was performed. Characteristics of each methodology were compared and analyzed by simulated values with ANOVA(analysis of variance) and post-hoc analysis. First, the method using moving viewpoints was found to be appropriate for the regulation of building height as it could reflect basic characteristics of landscape which was sequential and it did not show big difference in analysis result according to situational setting. Second, the method using grid viewpoints showed a problem that viewpoints at left and right sides viewed ridges of other mountains than the background mountains of the target land. Additionally, the simulation method that induces three-dimensional cross-sections between multiple sight-surface and virtual construction points created at viewpoints used in this study was found to be useful in the simulation review with various settings as it induced the marginal height of the spot quantitatively.

Intelligent Motion Planning System for an Autonomous Mobil Robot (자율 이동 로봇을 위한 지능적 운동 계획 시스템)

  • 김진걸;김정찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1503-1517
    • /
    • 1994
  • Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.

  • PDF

A Study for Possibility to Detect Missing Sidewalk Blocks using Drone (드론을 이용한 보도블럭 탈락 탐지 가능성 연구)

  • Shin, Jung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.34-41
    • /
    • 2021
  • Sidewalks are facilities used for the safe and comfortable passage of pedestrians and are paved with blocks of various materials. Currently, Korea does not have a quantitative survey method for the pavement condition of sidewalks, so it is necessary to develop an efficient survey method. Drones are being used as an efficient survey tool in various fields, but there are limited studies in which sidewalks have been investigated. This study investigates the possibility of detection by limiting the missing sidewalk blocks using a drone. This study is an initial study on the development of a method for detecting damage in sidewalk blocks. For this, sidewalk blocks were artificially removed to simulate a dropout situation, and images were acquired with 0.7-cm resolution using a drone. As a characteristic of the point cloud data acquired through image pre-processing, there was high variance of the elevation of the points in the missing area of the sidewalk block. Using these characteristics, an experiment was conducted to detect the missing parts of the sidewalk block by applying four thresholds to the variance of the elevation of points included in the grid corresponding to the sidewalk area. As a result, the detection accuracy was shown with a positive detection ratio of 70-80%, omission errors of 20-30%, and commission errors lower than 2%. It is judged that the possibility of detecting missing sidewalk blocks is high. This study focused on detecting a simulated missing sidewalk block in a limited environment. Therefore, it is expected that an efficient and quantitative method of detecting damaged sidewalk blocks can be developed in the future through additional research with considerations of the actual environment.

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City (하늘시계지수 비교 및 도시기온 상관성 연구: 강남 선정릉지역을 중심으로)

  • Yi, Chaeyeon;Shin, Yire;An, Seung Man
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.

Numerical Investigation of Pollutant Dispersion in a Turbulent Boundary Layer by Using Lattice Boltzmann-Subgrid Model (격자볼츠만 아격자 모델을 이용한 난류 경계층 내에서의 오염물질 확산에 대한 수치적 연구)

  • Shin, Myung-Seob;Byun, Sung-Jun;Kim, Joon-Hyung;Yoon, Joon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.169-178
    • /
    • 2011
  • The dispersion of a pollutant in a turbulent boundary layer has been described in this study by using a two-dimensional lattice Boltzmann method (LBM) and the Smagorinsky sub-grid-scale (SGS) model. The scalar transport equation corresponding to the pollutant concentration is adopted; the pollutant is considered to be in a continuous phase. The pollutant source is classified as ground-level source (GLS) and elevated-point source (ES). Air velocity and particle concentration profile for the pollutant are compared with the respective results and profiles obtained in the experiments of Fackrell and Robins (1982) and Raupach and Legg (1983). The numerical results obtained in this study, i.e., the simulation and the experimental data for the mean flow velocity profiles and the pollutant concentration profiles, are in good agreement with each other.

A Study on Efficient Storage Method for High Density Raster Data (고밀도 격자자료의 효율적 저장기법 연구)

  • JunJang, Young-Woon;Choi, Yun-Woong;Lee, Hyo-Jong;Cho, Gi-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.401-408
    • /
    • 2009
  • A study for 3D-reconstruction and providing the geospatial information is in progress to many fields recently. For efficient providing the geospatial information, the present information has to be updated and be revised and then the latest geospatial information needs to be acquired economically. Especially, LiDAR system utilized in many study has a advantage to collect the 3D spacial data easily and densely that is possible to supply to the geospatial information. The 3D data of LiDAR is very suitable as a data for presenting 3D space, but in case of using the data without converting, the high performance processor is needed for presenting 2D forms from point data composed by 3D data. In comparison, basically the raster data structure of 2D form is more efficient than vector structure in cheap devices because of a simple structure and process speed. The purpose of this study, in case of supplying LiDAR data as 3D data, present the method that reconstructs to 2D raster data and convert to compression data applied by th tree construction in detail.

A Finite Element Galerkin High Order Filter for the Spherical Limited Area Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Two dimensional finite element method with quadrilateral basis functions was applied to the spherical high order filter on the spherical surface limited area domain. The basis function consists of four shape functions which are defined on separate four grid boxes sharing the same gridpoint. With the basis functions, the first order derivative was expressed as an algebraic equation associated with nine point stencil. As the theory depicts, the convergence rate of the error for the spherical Laplacian operator was found to be fourth order, while it was the second order for the spherical Laplacian operator. The accuracy of the new high order filter was shown to be almost the same as those of Fourier finite element high order filter. The two-dimension finite element high order filter was incorporated in the weather research and forecasting (WRF) model as a hyper viscosity. The effect of the high order filter was compared with the built-in viscosity scheme of the WRF model. It was revealed that the high order filter performed better than the built in viscosity scheme did in providing a sharper cutoff of small scale disturbances without affecting the large scale field. Simulation of the tropical cyclone track and intensity with the high order filter showed a forecast performance comparable to the built in viscosity scheme. However, the predicted amount and spatial distribution of the rainfall for the simulation with the high order filter was closer to the observed values than the case of built in viscosity scheme.