• Title/Summary/Keyword: point emitter

Search Result 27, Processing Time 0.023 seconds

Performance and Hydraulic Characteristics of Drip Emitters (점적 emitter 의 성능과 수리적 특성)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.33-40
    • /
    • 1999
  • Variations in the discharge rates of drip emittes were examined to find the effects of operation pressure and the tube length and to evaluate performance of the emitters. Several point-source emitters were selected such as pressure compensated, anti-leak pressure compensated, turbulent flow regulated, flow regulated, ready-made dripper, and spaghetti. Combination of operation pressure and tube length were compared. The microirrigatioon system was operated at pressures of 0.5 , 1.0 , 1.5 and 2.0 bar. The discharge from emitters wer collected at every ten meters along the lateral tube and weighted. In order to evaluate the drip emitters performance coeffcient of discharge variation , statistical uniformity, and emission uniformity were calculated. No significant variation in discharge along drip tube resulted with all emitters. There is no trend of variatiiono of discharge rate from pressure compensated emitters with increase in operation pressures. But discharge rate from other types of emitters increased with increase in operation pressures. The nominal discharge of each emitter was secured at pressure of 1.0 bar, Evaluation using statiscal and emission uniformity coefficients indicated that most of the emitters excepts tubulent flow regulated emitter and ready-made dripper performed at excellent level.

  • PDF

Frequency Selection Methods in RF-Powered Backscatter Cognitive Radio Networks with Spectrum Sensing (스펙트럼 센싱을 적용한 인지 무선 기반 백스케터 네트워크의 주파수 선택 기법)

  • Hong, Seung Gwan;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.98-102
    • /
    • 2017
  • In this paper, we study RF-powered backscatter cognitive radio networks to improve the performance for the secondary user which is backscatter radio based wireless sensors. In our proposed model, we consider an avoiding the doubly round-trip attenuation to add a carrier emitter and utilization of spectrum sensing information. When the primary channel is busy, the secondary user is able to harvest RF energy from the channel through a hybrid-access point (H-AP) and a carrier emitter. When the channel becomes idle, the secondary user will be use the harvested energy to operate wireless sensors, to use the sensing and to backscatter through the carrier emitter. We model mathematically the deterministic and multisource elements of a number of tagged channels. In the proposed communication environment, we show the BER performance of the backscatter communication using WiFi signal.

Fabrication of high-performance carbon nanotube field emitter using Thermal Chemical Vapor Deposition

  • Yu, Wan-Jun;Cho, You-suk;Park, Gyuseok;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.43-43
    • /
    • 2003
  • Carbon nanotubes(CNTs) have many application points, which are field emission devices, composites, hydrogen storage, nanodevices, supercapacitor and secondary battery. The most promising application point is emitter tip mays of field emission devices. Furthermore, it may be also useful as a vacuum device for high frequency and high power. But, there are some obstacles to fabricate carbon nanotube field emission device. One is that CNTs grown by CVD method has weak adhesion with substrate and the other is non-uniform length of them. These problems are very crucial in aging property and reliability of device in the field emission.

  • PDF

Fabrication and characterization of a carbon nanotube-based point electron source

  • Choi, Ha-Kyu;Kim, G.Y.;Song, Y.I.;Jeong, H.J.;Lim, S.C.;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1536-1537
    • /
    • 2005
  • We have made point electron sources using carbon nanotubes (CNTs). For the fabrication of point electron sources, CNTs were dispersed in a solution and attached on electrochemically etched W tips using electrophoresis. In our study, we have utilized various CNTs such as single-walled CNT (SWCNT), multiwalled CNT (MWCNT), and thin-MWCNT and threshold current, turn-on voltage, filed enhancement factor of each emitter have been studied upon a tube/bundle diameter and length. In addition, fieldemitted electron energy distribution of various CNT emitters is characterized.

  • PDF

The use of Interfacial Graphene to Carbon nanotube Point emitter for Field Emission Electric Propulsion (그래핀을 이용한 탄소나노튜브 전계방출소자 계면 개질 및 전자 추진계 응용)

  • Lee, Jeong Seok;Kang, Tae June;Kim, Dae Weon;Kim, Yong Hyup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.1004-1009
    • /
    • 2012
  • Carbon nanotube are nanostructure with extraordinary field emission properties like high current density, low driving voltage and long time stability, because of their high electrical conductivity, high aspect ratio for geometrical field enhancement and superior thermal stability. But, there is some problem to mate metal and carbon nanotube, we have resolved this problem by using interfacial graphene. This approach takes advantage of superior electric and thermal conductivity between metal and carbon nanotube and shows superior performance compared to the existing field emitters. This result shows that such a carbon nanotube emitter in a stage where it can be used for Field Emission Electric Propulsion (FEEP).

Interface Structures of Ag-Si Contacts with Thermal Properties of Frits in Ag Pastes

  • Choi, Seung-Gon;Kim, Dong-Sun;Lee, Jung-Ki;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.390-396
    • /
    • 2012
  • Ag pastes added to Bi-oxide frits have been applied to the electrode material of Si solar cells. It has been reported that frits induce contacts between the Ag electrodes and the Si wafer after firing. During firing, the control of interfaces among Ag, the glass layer, and Si is one of the key factors for improving cell performance. Specifically, the thermo-physical properties of frits considerably influence Ag-Si contact. Therefore, the thermal properties of frits should be carefully controlled to enhance the efficiency of cells. In this study, the interface structures among Ag electrodes, glass layers, and recrystallites on an $n^+$ emitter were carefully analyzed with the thermal properties of lead-free frits. First, a cross-section of the area between the Ag electrodes and the Si wafer was studied in order to understand the interface structures in light of the thermal properties of the frits. The depth and area of the pits formed in the Si wafer were quantitatively calculated with the thermal properties of frits. The area of the glass layers between the Ag electrodes and Si, and the distribution of recrystallites on the $n^+$ emitter, were measured from a macroscopic point of view with the characteristics of the frits. Our studies suggest that the thermophysical properties should be controlled for the optimal performance of Si solar cells; our studies also show why cell performance deteriorated due to the high viscosity of frits in Ag pastes.

Computer Simulation for Development of Micro-Focus X-ray Generator (미소초점엑스선원 개발을 위한 전산모사)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.403-408
    • /
    • 2011
  • To develop the MFX (Micro-Focus X-ray) tube, the trajectories of electrons emitted from the field emission cathode was simulated using SIMION program. Regardless of starting position of the electron in emitter, we found out the fact that there is the optimum extractor voltage Ve, which can focus the electron beam on one place. Extractor voltage Ve varies depending on the source voltage Vs, but the ratio of two voltages (Ve/Vs) is always constant, its value was 99.4%. When the ratio of two voltages (Ve/Vs) was 99.4%, the beam diameter in the cross-over point was $1.2{\mu}m$. Because the focal spot size in MFXG (Micro-Focus X-ray Generator) can not be less than the cross-over diameter within MFX tube, it is important to find out the conditions that can make a smaller beam diameter. Therefore, the above results is considered to be a very important ones in the development of the MFXG.

Development Plan of a Human Model System for Educating Acupoint Location and Its Implementation (경혈 위치교육 평가지원시스템의 개발계획 수립과 제작)

  • Yeo, Sujung;Nam, Donghyun
    • Korean Journal of Acupuncture
    • /
    • v.36 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Objectives : Teaching the standardized acupuncture point locations and improving the accuracy of acupoint locations through objective evaluation is a very important part of Korean medicine education. The aim of this study is to develop a dummy system for evaluation and support of teaching acupoint location in meridian and acupoints classes and to introduce the developed system. Methods : We established a protocol for the development of the system. The protocol included definition of usage purpose, definition of its essential performance, and set of scope. The system compares the amount of light at the target acupoint with the amount of light at the other sites to determine whether the target acupoint is properly specificated. Results : A prototype of the system was built according to the protocol and consists of light emitter, dummy, control/operation, input part and output part. The light emitter projects laser beam passing through the skin of the dummy. Light sensors were attached inside the acupoints of the dummy. Three types of light sensors were selected depending on the location of the acupoints. The arithmetic, input, and output parts were constructed using Arduino and Raspberry pi boards. The developed system was applied in class. Conclusions : It is thought that the dummy system for evaluation and support of teaching acupoint location can be used as a training model in order to help teach standardized acupoint locations and objective evaluation.

Field emission from diamond-like carbon films studied by scanning anode

  • Ahn, S.H.;Jeon, D.;Lee, K.-R.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.54-58
    • /
    • 1999
  • We deposited diamond-like carbon (DLC) films using ion beam sputtering of a graphite target on flat substrates for use as a thin film field emitter. An n-type silicon wafer, titanium-coated silicon, and indium tin oxide (ITO) coated glass were used as a substrate. All films exhibited a sudden increase in the emission after a breakdown occurred at high voltage. The morphology of the films after the breakdown depended on the substrate. On ITO and Ti substrates, the DLC film peeled off upon breakdown, but on the Si substrate the surface melting due to breakdown resulted in the formation of various structures such as a sharp point, mound, and crater. By scanning the deformed surface with a tip anode, we found that the emission was concentrated at the deformed sites, indicating that the field enhancement due to the morphology change was responsible for the increased emission.

  • PDF

Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm (엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.