• 제목/요약/키워드: point dose

Search Result 635, Processing Time 0.036 seconds

Comparison of Treatment Planning on Dosimetric Differences Between 192Ir Sources for High-Dose Rate Brachytherapy (고선량률 근접치료에서 이리듐-192 선원의 선량특성 차이에 관한 치료계획 비교)

  • Yang, Oh-Nam;Shin, Seong Soo;Ahn, Woo Sang;Kim, Dae-Yong;Kwon, Kyung-Tae;Lim, Cheong-Hwan;Lee, Sang Ho;Choi, Wonsik
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • To evaluate whether the difference in geometrical characteristics between high-dose-rate (HDR) $^{192}Ir$ sources would influence the dose distributions of intracavitary brachytherapy. Two types of microSelectron HDR $^{192}Ir$ sources (classic and new models) were selected in this study. Two-dimensional (2D) treatment plans for classic and new sources were generated by using PLATO treatment planning system. We compared the point A, point B, and bladder and rectum reference points based on ICRU 38 recommendation. The radial dose function of the new source agrees with that of the classic source except difference of up to 2.6% at the nearest radial distance. The differences of anisotropy functions agree within 2% for r=1, 3, and 5 cm and $20^{\circ}$ < ${\theta}$ < $165^{\circ}$. The largest discrepancies of anisotropy functions reached up to 27% for ${\theta}$ < $20^{\circ}$ at r=0.25 cm and were up to 13%, 10%, and 7% at r=1, 3, and 5 cm for ${\theta}$ > $170^{\circ}$, respectively. There were no significant differences in doses of point A, point B, and bladder point for the treatment plans between the new and classic sources. For the ICRU rectum point, the percent dose difference was on average 0.65% and up to 1.0%. The dose discrepancies between two treatment plans are mainly affected due to the geometrical difference of the source and the sealed capsule.

Image Guided Brachytherapy in Cervix Cancer

  • Park, Sung-Yong;Shin, Kyung-Hwan;Park, Dahl;Cho, Jung-Keun;Kim, Dae-Yong;Kim, Jong-Won;Cho, Kwan-Ho;Kim, Tae-Hyun;Chie, Eui-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.154-156
    • /
    • 2002
  • Brachytherapy has a long history in the treatment of cancer. However, the treatment planning technique for brachytherapy has lagged somewhat behind the corresponding developments for external beam therapy as far as the imaging technique is concerned. Currently, the orthogonal-film-based treatment planning is performed at most institutions even though the CT-based planning is available. The aim of this study is to evaluate the CT-based vs. the orthogonal-film-based treatment planning in cervix cancer. The doses to point A, point B, rectum and bladder points according to ICRU 38 were calculated for the two methods above. In addition, the volumetric studies such as 3D dose computation and DVH were obtained for the CT-based planning. For the bulky tumor, the isodose lines of point A prescription were not fairly covered for the CTV. The CT -based dose planning can overestimate the maximum dose delivered to bladder and rectum by 30%. The CT-based planning has several advantages over the orthogonal-film-based such as 3D dose display, DVH, and more accurate target delineation. It is suggested that the prescription point in cervix cancer be revised especially for the bulky tumor.

  • PDF

The Anode Heel Effect caused by changing the Angle of X-Ray Tube (X-선관 각도 변경에 따른 Anode Heel Effect)

  • Shin, Seong-gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.435-442
    • /
    • 2016
  • This study was an investigation of the anode heel effect caused by changing the angle of the x-ray tube. We established the following conditions for experimental measurements: 70 kV, 30 mAs, focus-detector distance of 100cm, and a collimator setting of $35{\times}43cm^2$. The measurement points were set up at the center of the collimator and extended to each side in intervals of 3.5cm, with points A1, A2, A3, A4, A5, A6 on the anode side and points C1, C2, C3, C4, C5, C6 on the cathode side. We measured the entrance surface dose from point A6 to point C6 with each point perpendicular to an x-ray tube. And we did the same when measuring different angles of the x-ray tube from 15 to 30 degrees for every point on the anode and cathode sides. Using perpendicular x-ray tube, we found that the entrance surface dose of the A5 point was three times higher than that of the C5 point. Thus, we conclude that if the anode side is placed near highly radiosensitive organs, then there will be less radiation exposure when using a perpendicular x-ray tube. When imaging using x-ray tube angles, an angle to the cathode side can reduce the gap of the entrance surface dose on both the anode and cathode sides. When imaging areas where there are differences in thickness between the upper and lower sides, the angle to the cathode side that is closer to the thicker area can reduce the gap of the entrance surface dose and capture a higher quality image.

Comparison of Dose Depending on the Position when Shooting Panorama and CBCT (CBCT와 panorama 촬영시 위치에 따른 선량 비교)

  • Jeong, Cheonsoo;Kim, Chongyeal
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.175-179
    • /
    • 2013
  • To find out the appropriate defensive measures for protectors and radiation workers in rotating radiation generating devices such as CBCT and panorama, irradiation dose depending on the position was compared and analyzed. The devices such as panorama DP-90-P PAX-500 (Vatech, Korea) and CBCT DCT-90-P IMPLAGRAPHY Dental CT system (Vatech, Korea) were used. As irradiation dose measuring instruments, Ion chamber model 2026 and Reader 20X5-60E were used. The exposure conditions were set as the factor used in the clinical trial. The result of the experiment showed that panorama was the highest, 81${\mu}R$, at point A where the test starts first and the lowest, 53${\mu}R$, at point D where the test ends. In case of CBCT, it was the highest, 1,021${\mu}R$, at point D where the test ends and was measured as the highest, 809.67${\mu}R$, at point A where the test starts. If protectors and radiation workers are forced to examine a patient holding him, they should be positioned in the middle of the point where X ray tube starts to rotate and the point where it ends to avoid the position where radiation dose is the most. And due to the nature of equipment, it will be the safest for them to stand at the opposite side of the machine and to uphold it from the rear rather than upholding it from the side of a patient and they should wear appropriate the protection gear.

The Study on the Head and Neck Phantom for Quality Assurance of Intensity Modulated Radiotherapy (세기변조방사선치료의 정도관리를 위한 두경부 팬톰 제작에 관한 연구)

  • Shin Dongho;Park Sung-Yong;Kim Joo Young;Lee Se Byeong;Cho Jung Keun;Kim Dae Yong;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • For the QA of IMRT treatment of head and neck cancer by using M3 (BrainLAB Inc. Germany), it is not easy to measure delivery dose exactly because the dose attenuation appears by the couch according to the position of table and gantry. In order to solve this problem, we fabricated head and neck phantom which would be implemented on the couch mount of Brain Lab Inc. We investigated dose attenuation by the couch and found the difference of dose distribution by the couch, in the applying this phantom to the clinic. After measurement, we found that point dose attenuation was 35% at maximum and dose difference was 5.4% for a point dose measurement of actual patient quality assurance plan.

  • PDF

Prediction of nonresponsiveness to mediumdose intravenous immunoglobulin (1 g/kg) treatment: an effective and safe schedule of acute treatment for Kawasaki disease

  • Moon, Kyung Pil;Kim, Beom Joon;Lee, Kyu Jin;Oh, Jin Hee;Han, Ji Whan;Lee, Kyung Yil;Lee, Soon Ju
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.4
    • /
    • pp.178-182
    • /
    • 2016
  • Purpose: Medium-dose (1 g/kg) intravenous immunoglobulin (IVIG) is effective in the majority of patients with Kawasaki disease (KD) but some patients who do not respond to medium-dose IVIG are at high risk for the development of coronary artery lesions (CALs). The purpose of this study was to identify the clinical predictors associated with unresponsiveness to medium-dose IVIG and the development of CALs. Methods: A retrospective study was performed in 91 children with KD who were treated with mediumdose IVIG at our institution from January 2004 to December 2013. We classified the patients into responders (group 1; n=68) and nonresponders (group 2; n=23). We compared demographic, laboratory, and echocardiographic data between the 2 groups. Results: Multivariate logistic regression analysis identified 6 variables as predictors for resistance to medium-dose IVIG. We generated a predictive scoring system assigning 1 point each for percentage of neutrophils ${\geq}65%$, C-reactive protein ${\geq}100mg/L$, aspartate aminotransferase ${\geq}100IU/L$, and alanine aminotransferase ${\geq}100IU/L$, as well as 2 points for less than 5 days of illness, and serum sodium level ${\leq}136mmol/L$. Using a cutoff point of ${\geq}4$ with this scoring system, we could predict nonresponsiveness to medium-dose IVIG with 74% sensitivity and 71% specificity. Conclusion: If a patient has a low-risk score in this system, medium-dose IVIG can be recommended as the initial treatment. Through this process, we can minimize the adverse effects of high-dose IVIG and incidence of CALs.

Current Status of High Dose Rate Brachytherapy in Cervical Cancer in Korea and Optimal Treatment Schedule (자궁 경부암 고선량율 강내조사 치료의 국내 현황과 적정 치료방법)

  • Huh, Seung-Jae
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.357-366
    • /
    • 1998
  • Brachytherapy is an essential part of radiotherapy for uterine cervical cancer. The low dose rate (LDR) regimen has been the major technique of intracavitary therapy for cervical cancer. However, there has been an expansion in the last 20 years of high dose rate (HDR) machines using Ir-192 sources. Since 1979, HDR brachytherapy has been used for the treatment of uterine cervical cancer in Korea. The number of institutions employing HDR has been increasing, while the number of low dose rate system has been constant. In 1995, there was a total 27 HDR brachytherapy units installed and 1258 cases of patients with cervical cancer were treated with HDR Most common regimens of HDR brachytherapy are total dose of 30-39 Gy at point A with 10-13 fractions in three fractions per week. 24-32 Gy with 6-8 fractions in two fractions per week, and 30-35 Gy with 6-7 fractions in two fractions per week. The average fractionation regimen of HDR brachytherapy is about 8 fractions of 4.1 Gy each to Point A. In Korea, treatment results for HDR brachytherapy are comparable with the LDR series and appears to be a safe and effective alternative to LDR therapy for the treatment of cervical carcinoma. Studies from the major centers report the five-year survival rate of cervical cancer as. 78-86$\%$ for Stage 1, 68-85$\%$ for stage 11, and 38-56$\%$ for Stage III. World-wide questionnaire study and Japanese questionnaire survey of multiple institutions showed no survival difference in any stages and dose-rate effect ratio (HDR/LDR) was calculated to be 0.54 to 0.58. However the optimum treatment doses and fractionation schemes appropriate to generate clinical results comparable to conventional LDR schemes have yet to be standardized. In conclusion, HDR intracavitary radiotherapy is increasingly practiced in Korea and an effective treatment modality for cervical cancer. To determine the optimum radiotherapy dose and fractionation schedule, a nation-wide prospective study is necessary in Korea. In addition, standardization of HDR application (clinical, computer algorithms, and dosimetric aspects) is necessary.

  • PDF

DEVELOPMENT OF POINT KERNEL SHIELDING ANALYSIS COMPUTER PROGRAM IMPLEMENTING RECENT NUCLEAR DATA AND GRAPHIC USER INTERFACES

  • Kang, Sang-Ho;Lee, Seung-Gi;Chung, Chan-Young;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.215-224
    • /
    • 2001
  • In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShieid utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc.

  • PDF

Study on Dosimetry Used TLD Dosimeter and Body Mass Index at Total Body Irradiation (전신조사방사선치료에서 열형광선량계를 이용한 선량 측정과 체질량지수에 관한 고찰)

  • Seo, Dong-Rin;Kim, Yeon-Soo;Kim, Dae-Sup;Yoon, Hwa-Ryong;Back, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Purpose: The aim of study is to expose a more uniform dose depending on the relationship between a body mass index in patients who underwent radiation therapy and an acquired dosimetric information by using a thermoluminescent dosimeter. Materials and Methods: Since 2006 to August 2011 we investigated 28 people who underwent radiation therapy were enrolled in AMC. Each patient was measured on the head, neck, chest, abdomen, pelvis, thigh, knee joint, and ankle joint using the thermoluminescent dosimeter. The measurement value of each points compared with the prescribed center point, abdominal point, and dose measurements of points on which to base the abdomen and the patient's body mass index (BMI) were compared with reference point, abdomen dose. Results: 28 patients on prescribed dose in the abdomen by which the center point, an average dose was $100.6{\pm}5.5%$, and the other seven measuring points with the average maximum difference among the head, neck, chest, pelvic, thigh, knee, and ankle were $92.8{\pm}4.2%$, $97.6{\pm}6.2%$, $96.4{\pm}5.5%$, $102.6{\pm}5.3%$, $103.4{\pm}7.9%$, $95.8{\pm}5.9%$, $96.1{\pm}5.5%$. The relationship of abdominal point dose and the patient's body mass index (BMI) was analyzed a scatter plot, and the result of linear relationship analysis by regression method, the regression of the dose (y) was -1.009 BMI (x) plus 123.3 and coefficient of determination ($R^2$) was represented 0.697. Conclusion: The total body irradiation treatment process was evaluated the dose deviation and then the prescribed dose by which the average abdominal dose was satisfied with $100.6{\pm}5.5%$. Results of the relationship analysis between BMI and dose, if we apply the correction value for each patients, it can be achieved more uniform dose delivery.

  • PDF

Dose Comparison of Treatment Plans Using Different Ir-192 Sources and Treatment Planning Systems for Intracavitary HDR Brachytherapy (고선량률 강내 근접치료에 사용되는 Ir-192 선원과 치료계획 시스템간의 계산선량 비교)

  • Park, Dong-Wook;Kim, Young-Seok;Park, Sung-Ho;Choi, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Song, Si-Yeol;Ahn, Seung-Do;Noh, Young-Joo
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • For HDR intracavitary brachytherapy with ovoids and a tandem, we compared the dose discrepancy of treatment plans using two different Ir-192 sources (microSelectron, Varian) and generated on two different treatment planning systems (PLATO, BrachyVision). The treatment plans of ten patient treated from Oct. 2007 to Jan. 2008 were selected for these comparisons. For the comparison of dose calculation using different sources, the average discrepancies were $-0.91{\pm}0.09%$, $-0.27{\pm}0.07%$, $0.22{\pm}0.39%$, and $0.88{\pm}0.37%$ in total treatment time and at B-point and ICRU bladder and rectum reference point, respectively. Comparing the two systems, the average dose discrepancies between treatment planning programs were $-0.22{\pm}0.42%$, $-0.25{\pm}0.29%$, $-0.23{\pm}0.63%$, and $-0.17{\pm}0.76%$, and the average dose discrepancies between positioning methods (PLATO with film and BrachyVision with digitial image) were $-0.61{\pm}0.59%$, $-0.77{\pm}0.45%$, $-0.72{\pm}1.70%$, and $0.35{\pm}2.82%$ at A-point, B-point, and ICRU bladder and rectum reference points, respectively. The rectal dose discrepancies between two systems were reached 5.87%. The difference in the dwell position expected by each TPS are mainly affected by the differences in the positioning method in TPSs and have an effect on dose calculations of rectal and bladder located in AP direction.

  • PDF