• Title/Summary/Keyword: point distribution pattern

Search Result 215, Processing Time 0.031 seconds

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF

FEM Analysis of the Effects of Mouth guard material properties on the Head and Brain under Mandibular Impact (구강보호장치의 재료적인 특성이 하악골 충격 시악골 및 두부에 미치는 영향에 관한 유한요소분석)

  • Kang, Nam-Hyun;Kim, Hyung-Sub;Woo, Yi-Hyung;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • Statement of problem & Purpose: The purpose of this study was to investigate the effect of a mouth guard material properties on the skull and brain when they were under impact loads on mandible. Material and methods: Two customized mouth protectors having different material propeerst ieach other were made for a female Korean who had no history of brain trauma, no cerebral diseases, nomal occlusion and natural dentition. The 3D finite element model of human skull and brain scanned by means of computed tomography was constructed. The FEM model of head was composed of 407,825 elements and 82,138 nodes, including skull, brain, maxilla, mandible, articular disc, teeth and mouth guard. The stress concentrations on maxillary teeth, maxilla and skull with two mouth guards were evaluated under oblique impact load of 800N onto mandibular 3 loading points for 0.1sec. And the brain relative displacement was compared in two different mouth guard materials under same condition. Result and Conclusion: The results were as follows; 1. In comparison of von Mises stress on maxillary teeth, a soft mouth guard material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 2. In comparison of von Mises stress on maxilla and skull, A soft mouth protector material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 3. For impact loads on mandible, there were more stress concentrated area on maxilla and skull with hard mouth guard than soft with mouth protector. 4. For impact loads on mandible, brain relative displacement had little relation with mouth guard material properties. In results of this study, soft mouth guard materials were superior to hard mouth guard materials for mandible impact loads for prevention of sports injuries. Although the results of this study were not enough to figure out the roles of needed mouth guard material properties for a human head, we got some knowledge of the pattern about stress concentration and distribution on maxilla and skull for impact loads with soft or hard mouth protector. More studies are needed to substantiate the relationship between the mouth guard materials and sports injuries.

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

Topoclimatological interpretation of the daily air temperature minima at 17 locations crossing over Yangpyeong basin in 1986 spring (봄철 양평지역(楊平地域)의 지형(地形) 및 고도(高度)에 따른 일최저기온(日最低氣溫)의 분포(分布))

  • Kang, An-Seok;Yun, Jin-Il;Jung, Yeong-Sang;Tani, No Bureru
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 1986
  • Frost damage which can reduce yields, impair fruit quality and cause loss of trees is closely related to the occurrence of daily minimum temperature. Horizontal distribution of air temperature minima can be characterized by conditions of radiational cooling and gravitational movement of cold air, which are influenced by the regional topographic features. Observations were made on the air temperature minima over Yangpyeong area, to delineate potential effects of topography on the temperature pattern during spring season. Two routes were selected for the observation. Liquid glass minimum thermometers were installed at 17 sites through the old peach orchards which had been closed due to the frequent freeze-frost hazards during the recent years. This route was 8.5km long and the highest point was 350m above mean sea level. The other route, which was 2.5km in distance, was run with a digital resistance thermometer during the hour just before sunrise. Observations were made both on a calm-clear day (April 30, 1986) and a windy-overcast day (May 1, 1986). The temperature on April 30 was in increasing trend with elevation but this was modified at near the riverside and the downtown area. An orchard lying on a hilltop showed the temperature $1^{\circ}C$ higher than near by lowland of which elevation was about 30m lower. The minimum temperature on the overcast day was little affected by terrestrial conditions but by the atmospheric lapse condition. The peach orchards severely damaged by cold air were found in the area where the lowest minimum temperature was observed. The results may be useful for selection of the proper orchard location to be developed in an area.

  • PDF

An Analysis of Suitable site of Constructed Wetland using High Resolution Satellite Image and GIS in Kyoung-An Stream (고해상도 위성영상과 GIS를 이용한 인공습지 적지 분석 -경안천을 대상으로-)

  • Koh, Chang-Hwan;Jin, Do;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • Various human activities such as the Urbanization and Industrialization are estimated the main factors to pollute the stream. Now days, numerous studies are carried out for managing non-point sources which have un-effect on water quality of streams by land-use and livestock. In case of Korea, a matter of concern that the management of Pal dang reservoir - the main water resources of the national capital region - has been occurring. Especially, large-scale constructed-wetlands are planned and constructed at the end of Kyoung-an stream. Additionally a lot of sewage treatment plants are newly installed and extended in this watershed. According to these efforts, water quality of Kyoung-an stream is predicted that would be improved. But the more detail and scientific analysis should be carried out for the water quality improvement, because, existing water quality improvement projects are not involved to analyze root of water quality deterioration and improvement plans. Therefore, this study aims to select suitable areas for constructed-wetlands and to calculate size of the constructed-wetlands for water quality improvement in Kyoung-an stream through the geographical pollutant distribution analysis and land-use pattern analysis by high resolution satellite image and suitable area analysis of constructed-wetlands by GIS(Geographic information system). The progress of this study is (1) to select maximum pollutant loaded area by geographical analysis based on water quality data, (2) to analyze land-use patterns using high resolution satellite image, (3) to select suitable areas of constructed-wetlands, (4) to calculate area and volume of chosen constructed-wetlands using GIS. Basically, sizes of constructed-wetlands are induced through the constructed-wetlands design index based on treatment ratio(provided by Korea Water Resources Corporation). As a result of this study, two areas are selected to construct constructed-wetlands. One of the area was $127,586m^2$ near by Yong-in sewage treatment plant, and the other area was $1,647m^2$ near by Ju-buk stream and Dae-dae stream.

  • PDF

The Distribution Pattern of Lymphocyte Subsets according to the Level of Serum Albumin in Preoperative Patients with Gastric Cancer (위암 환자에서 수술 전 혈청 알부민수치에 따른 림프구아형의 분포양상)

  • Choi, Sang-Kyung;Son, Sun-Hyang;Lee, Sung-Hyen;Park, Soon-Tae;Ha, Woo-Song;Hong, Soon-Chan;Lee, Young-Joon;Jung, Eun-Jung;Jeong, Chi-Young;Joo, Young-Tae;Sung, Jung-Youp
    • Journal of Gastric Cancer
    • /
    • v.5 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Purpose: Considering that nutritional state correlates to immunity, we performed this study to evaluate the correlation by assessing the numerical changes of the levels of serum albumin and lymphocyte subsets. Materials and Methods: The study was performed on patients who were diagnosed as having gastric cancer and who underwent curative surgery from August 1998 to August 2004 in the Gyeongsang National University Hospital and whose peripheral blood lymphocyte subsets were tested prior to surgery. The study population was a total of 150 cases. Results: The change in the lymphocyte subsets in relation to the change in the level of serum albumin in all patients with gastric cancer was determined, and was compared to disease stages. When patients were classified by using the level of serum albumin with 3.2 mg/dl as the cut-off point (low group: serum albumin <3.2 mg/dl, normal group = serum albumin $\geq$ 3.2 mg/dl), the number of peripheral blood lymphocytes, CD3+ cells, CD4+ cells, CD8+ cells, and CD16+ 56 cells were, significantly lower in the group with the level of serum albumin below 3.2 mg/dl (low group) than it was in the group with a serum albumin level above 3.2 mg/dl (normal group) (P<0.05). In stage I (n=59), CD16+56 cells were significantly lower in the low group. In stage II (n=29), the number of CD16+56 cells was lower and the ratio of CD4+/CD8+ was higher in the low group than in the normal group significantly. In stage IV (n=33), except for CD19+ cells, the number of all lymphocyte subsets was significantly lower and the ratio of CD4+/CD8+ was significantly higher in the low group. Conclusion: The group with a low level of serum albumin had a low absolute number of lymphocyte subsets. Based on this, we reconfirmed that the nutritional state is closely related with the immune state in patients with gastric cancer.

  • PDF

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

A Characteristics and Improvement of Thermal Environment in Summer of Protected Horticulture Complex Using CFD Simulation (CFD 시뮬레이션을 이용한 시설원예단지 여름철 외부 열환경 특성 및 개선방안)

  • Son, Jin-Kwan;Kong, Min-Jae;Choi, Deuggyu;Kang, Dong-Hyeon;Park, Min-Jung;Yun, Sung-Wook;Lee, Seungchul;Lee, Si-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2018
  • Agricultural or rural landscape provides various ecosystem services. However, the ecosystem services function is declining due to various environmental problems such as climate change, land use change, stream intensification, non-point pollution and garbage. The A1B scenario predicts that the mean air temperature of South Korea will rise $3.8^{\circ}C$ degrees celsius in 2100. Agricultural sector is very vulnerable to climate change, so it must be thoroughly predicted and managed. In Korea, the facility horticulture complex is 54,051ha in 2016 and is the 3rd largest in the world(MAFRA, 2014). Facilities of horticultural complexes are reported to cause problems such as groundwater decrease, vegetation and insects diversity reduction, landscapes damage and garbage increase, compared with the existing land use paddy fields. Heat island phenomenon associated with climate change is also accelerated by the high heat absorption of horticultural sites. Therefore, we analyzed the heat island phenomenon occurring in the facility of horticultural complex in Korea. As an improvement measurement, I examined how much air temperature is reduced by putting the channel and the open space. In the case of the Buyeo area, the Computational Fluid Dynamics (CFD) simulation was analyzed for the average summer temperature distribution in the current land use mode at $38.9^{\circ}C$. As an improvement measurement, CFD simulation after 10% of 6m water channel was found to have an effect of lowering the summer temperature of about $2.7^{\circ}C$ compared with the present average of $36.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $34.7^{\circ}C$, which is $4.2^{\circ}C$ lower than the present. For the Jinju area, CFD simulations were analyzed for the average temperature of summer at $37.8^{\circ}C$ in the present land use pattern. As an improvement measure, CFD simulations after 10% of 6m water channel were found to have an effect of lowering the summer temperature of about $2.6^{\circ}C$ compared to the current average of $35.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $33.9^{\circ}C$, which is $3.9^{\circ}C$ lower than the present. It can be said that the effect of summer temperature drop in open space and waterway has been proven. The results of this study are expected to be reflected in sustainable agriculture land use and used as basic data for government - level policy in land use planning for climate change.

A Study on the Determinants of Land Price in a New Town (신도시 택지개발사업지역에서 토지가격 결정요인에 관한 연구)

  • Jeong, Tae Yun
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.79-90
    • /
    • 2018
  • The purpose of this study was to estimate the pricing factors of residential lands in new cities by estimating the pricing model of residential lands. For this purpose, hedonic equations for each quantile of the conditional distribution of land prices were estimated using quantile regression methods and the sale price date of Jangyu New Town in Gimhae. In this study, a quantile regression method that models the relation between a set of explanatory variables and each quantile of land price was adopted. As a result, the differences in the effects of the characteristics by price quantile were confirmed. The number of years that elapsed after the completion of land construction is the quadratic effect in the model because its impact may give rise to a non-linear price pattern. Age appears to decrease the price until certain years after the construction, and increases the price afterward. In the estimation of the quantile regression, land age appears to have a statistically significant impact on land price at the traditional level, and the turning point appears to be shorter for the low quantiles than for the higher quantiles. The positive effects of the use of land for commercial and residential purposes were found to be the biggest. Land demand is preferred if there are more than two roads on the ground. In this case, the amount of sunshine will improve. It appears that the shape of a square wave is preferred to a free-looking land. This is because the square land is favorable for development. The variables of the land used for commercial and residential purposes have a greater impact on low-priced residential lands. This is because such lands tend to be mostly used for rental housing and have different characteristics from residential houses. Residential land prices have different characteristics depending on the price level, and it is necessary to consider this in the evaluation of the collateral value and the drafting of real estate policy.