• Title/Summary/Keyword: point cloud data reduction

Search Result 14, Processing Time 0.027 seconds

Development of LiDAR Simulator for Backpack-mounted Mobile Indoor Mapping System

  • Chung, Minkyung;Kim, Changjae;Choi, Kanghyeok;Chung, DongKi;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.91-102
    • /
    • 2017
  • Backpack-mounted mapping system is firstly introduced for flexible movement in indoor spaces where satellite-based localization is not available. With the achieved advances in miniaturization and weight reduction, use of LiDAR (Light Detection and Ranging) sensors in mobile platforms has been increasing, and indeed, they have provided high-precision information on indoor environments and their surroundings. Previous research on the development of backpack-mounted mapping systems, has concentrated mostly on the improvement of data processing methods or algorithms, whereas practical system components have been determined empirically. Thus, in the present study, a simulator for a LiDAR sensor (Velodyne VLP-16), was developed for comparison of the effects of diverse conditions on the backpack system and its operation. The simulated data was analyzed by visual inspection and comparison of the data sets' statistics, which differed according to the LiDAR arrangement and moving speed. Also, the data was used as input to a point-cloud registration algorithm, ICP (Iterative Closest Point), to validate its applicability as pre-analysis data. In fact, the results indicated centimeter-level accuracy, thus demonstrating the potentials of simulation data to be utilized as a tool for performance comparison of pointdata processing methods.

A Study on Digital Process of Injection Mold in Reverse Engineering (역공학을 이용한 사출금형제작 공정에 관한 연구)

  • Lee, Hui-Gwan;Kim, Hyeong-Chan;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.160-165
    • /
    • 2002
  • A study on digital processes of injection mold in reverse engineering are presented. Reverse engineering is useful fur several cases, where user has no geometry information of object. Laser scanner is used to obtaining 3D coordinates of object. Sequences to process cloud data are described; sampling to reduce number of points, sorting to adjust the point order, and fitting to curve and surface, and so on. Split slide structure of mold is used fur undercut part and high viscosity material. Flow of injection molding are analysed to correct cooling channel and simulate molding conditions. NC tool paths are generated to carve core and cavity. The processes are performed in digital data for reduction of lead time and consecutive geometry data.

Development of Automated Model of Tree Extraction Using Aerial LIDAR Data (항공 라이다 자료를 이용한 수목추출의 자동화 모델 개발)

  • Lee, Su-Jee;Park, Jin-Yi;Kim, Eui-Myoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3213-3219
    • /
    • 2014
  • Currently, increase of greenhouse gas has had a signigicant impact on climate change in urbanization. As a result, the government has been looking for ways to take advantage of the trees that generate oxygen and reduce carbon dioxide for the prevention of climate change. It is essential to extract individual tree for calculating the amount of carbon dioxide reduction of trees. Aerial LIDAR data have three-dimensional information of building as well as trees as form of point clouds. In this study, automated model was developed to extract individual tree using aerial LIDAR data. For this purpose, we established a methodology for extracting trees and then proceeded the process of developing it as an automated model based on model builder of ArcGIS Software. In order to evaluate the applicability of the developed model, the model was compared with commercial software in study area located in Yongin City. Through the experimental result, the proposed model was extract trees 9.91% higher than commercial software. From this results, it was found that the model effectively extracted trees.

Outlier Detection from High Sensitive Geiger Mode Imaging LIDAR Data retaining a High Outlier Ratio (높은 이상점 비율을 갖는 고감도 가이거모드 영상 라이다 데이터로부터 이상점 검출)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol;Jo, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.573-586
    • /
    • 2012
  • Point clouds acquired by a LIDAR(Light Detection And Ranging, also LADAR) system often contain erroneous points called outliers seeming not to be on physical surfaces, which should be carefully detected and eliminated before further processing for applications. Particularly in case of LIDAR systems employing with a Gieger-mode array detector (GmFPA) of high sensitivity, the outlier ratio is significantly high, which makes existing algorithms often fail to detect the outliers from such a data set. In this paper, we propose a method to discriminate outliers from a point cloud with high outlier ratio acquired by a GmFPA LIDAR system. The underlying assumption of this method is that a meaningful targe surface occupy at least two adjacent pixels and the ranges from these pixels are similar. We applied the proposed method to simulated LIDAR data of different point density and outlier ratio and analyzed the performance according to different thresholds and data properties. Consequently, we found that the outlier detection probabilities are about 99% in most cases. We also confirmed that the proposed method is robust to data properties and less sensitive to the thresholds. The method will be effectively utilized for on-line realtime processing and post-processing of GmFPA LIDAR data.