• Title/Summary/Keyword: point cloud

Search Result 823, Processing Time 0.025 seconds

Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions

  • Jamshidi, Sajad;Fallah, N.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.711-722
    • /
    • 2019
  • Considering stress singularities at point support locations, buckling solutions for plates with arbitrary number of point supports are hard to obtain. Thus, new Hp-Cloud shape functions with Kronecker delta property (HPCK) were developed in the present paper to examine elastic buckling of point-supported thin plates in various shapes. Having the Kronecker delta property, this specific Hp-Cloud shape functions were constructed through selecting particular quantities for influence radii of nodal points as well as proposing appropriate enrichment functions. Since the given quantities for influence radii of nodal points could bring about poor quality of interpolation for plates with sharp corners, the radii were increased and the method of Lagrange multiplier was used for the purpose of applying boundary conditions. To demonstrate the capability of the new Hp-Cloud shape functions in the domain of analyzing plates in different geometry shapes, various test cases were correspondingly investigated and the obtained findings were compared with those available in the related literature. Such results concerning these new Hp-Cloud shape functions revealed a significant consistency with those reported by other researchers.

Effect of Polymer Concentration and Solvent on the Phase Behavior of Poly(ethylene-co-octene) and Hydrocarbon Binary Mixture (Poly(ethylene-co-octene)과 탄화수소 2성분계 혼합물의 상거동에 대한 고분자 농도 및 용매의 영향)

  • Lee, Sang-Ho;Chung, Sung-Yun;Kim, Hyo-Jun;Park, Kyung-Gyu
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.318-323
    • /
    • 2004
  • Cloud-point and bubble-point curves for poly(ethylene-co-13.8 mol% octene) ($PEO_{13.8}$) and Poly(ethylene-co-15.3 mol% octene) ($PEO_{15.3}$) were determined up to $150^{\circ}C$ and 450 bar in hydrocarbons which have different molecular size and structure. Whereas ($PEO_{15.3}$+ n-pentane) system has cloud-point and bubble-point type transitions, ($PEO_{15.3}$+ n-propane) and ($PEO_{15.3}$+ n-butane) systems do only cloud-point type transition. In cyclo-pentane, -hexane, -heptane, and -octane, $PEO_{15.3}$ has a bubble-point transition. ($PEO_{13.8}$+ n-butane) mixture has a critical mixture concentration at 5 wt% PEO. (PEO + hydrocarbon) mixtures exhibit LCST type behavior. Solubility of PEO increases with hydrocarbon size due to increasing dispersion interaction which is favorable to dissolve PEO.

Point Cloud Slicing Based on 2D Delaunay Triangulation (2D Delaunay Triangulation을 이용한 점군 절단)

  • Park, Hyeong-Tae;Chang, Min-Ho;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.127-134
    • /
    • 2007
  • Presented in the paper is an algorithm to generate a section curve by slicing a point cloud including tens of thousands of points. Although, there have been previous research results on the slicing problem, they are quite sensitive on the density variations of the point cloud, as well as on the local noise in the point cloud. To relive the difficulties, three technological requirements are identified; 1) dominant point sampling, 2) avoiding local vibration, and 3) robustness on the density changes. To satisfy these requirements, we propose a new slicing algorithm which is based on a node-sphere diagram. The algorithm has been implemented and tested with various examples.

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.

Complete 3D Surface Reconstruction from Unstructured Point Cloud (조직화되지 않은 점군으로부터의 3차원 완전 형상 복원)

  • Li Rixie;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.570-577
    • /
    • 2005
  • In this study a complete 3D surface reconstruction method is proposed based on the concept that the vertices of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Phase Behavior of Ternary Mixture of Poly(ethylene-co-octene) - Ethylene - 1-Octene (Poly(ethylene-co-octene) - Ethylene - 1-Octene 3성분계 혼합물의 상거동)

  • Lee, Sang-Ho;Sohn, Jin-Eun;Chung, Sung-Yoon;Han, Sang-Hoon
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • Cloud-point data to $160^{\circ}C$ and 1,000 bar are presented with poly(ethylene-co-15.3 mole% octene) copolymers ($PEO_{15}$) in pure 1-octene and mixtures of ethylene - 1-octene. The cloud-point curves for $PEO_{15}$ - ethylene - 1-octene mixture dramatically increase in pressure to as high as 1,000 bar with an increasing ethylene concentration. At ethylene concentrations less than 18 wt%, the ternary mixture has bubble- and cloud-point curves. As the ethylene concentration of the ternary mixture increases, the bubble-point curve and the single-phase region reduce. The reduction in the single phase region with increasing ethylene concentrations is the result of reduced dispersion interactions between $PEO_{15}$ and the mixed solvent. The single-phase region decreases with increasing temperatures when ethylene concentrations are lower than 36 wt%, whereas the single-phase region increases with temperatures at ethylene concentrations greater than 50 wt%. At ethylene concentrations greater than 50 wt% the effect of the polar interactions of the mixed solvent, which is unfavorable to dissolve PEO, is greater than the effect of the density of the mixed solvent. Therefore, the cloud-point pressures increase with a decreasing temperature. However, at ethylene concentrations less than 50 wt%, the cloud-point pressures decrease with temperature, because the effect of the polar interactions is less than the density effect.

Reconstruction of Canal Surfaces (캐널곡면의 복원)

  • Lee In-Kwon;Kim Ku-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.411-417
    • /
    • 2005
  • We present a method to reconstruct a canal surface from a point cloud (a set of unorganized points). A canal surface is defined as a swept surface of a moving sphere with varying radii. By using the shrinking and moving least-squares methods, we reduce a point cloud to a thin curve-like point set which can be approximated to the spine curve of a canal surface. The distance between a point in the thin point cloud and a corresponding point in the original point set represents the radius of the canal surface.

He-Ne Laser을 이용한 혼합용액의 Cloud-point curves 측정

  • 서신호;선우환
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.129-130
    • /
    • 1997
  • 국내 및 해외에서 생산 되는 윤활유에 Cloud-point curves 및 상용성 개념을 도입하여 이러한 데이터를 측정할수 있는 장치를 기존의 Light scatering, Neutron scatering, Visible Method등이 아닌 He-Ne Laser를 이용하여 측정하는 장치이다. He-Ne Laser을 이용하여 공중합체 용액의 Cloud-point curves를 측정하였고, 측정 Cloud-point curves 데\ulcorner를 연속열역학적 상평형관계식에 적용 coex istence curves를 추산하였으며 추산치와 측정치를 비교 검토하였다. 멀지 않은 해에는 이러한 분석장치가 상용화되어 윤활유 제품의 상용성을 평가하는 장치가 될 것으로 사료된다. 따라서, 기존 윤활유 제품 및 신제품의 상용성(compatibility)을 He-Ne Laser을 이용하여 측정하고 다른 일면으로는 윤활유 제품의 고품질화 및 제품의 경쟁력을 강화하는데 커다란 영향을 미치리라 사료된다.

  • PDF

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

A Study on Cross-sectioning Methods for Measured Point Data (측정 점데이터로부터 단면 데이터 추출에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.272-276
    • /
    • 2000
  • Reverse engineering refers to the process that creates a physical part from acquiring the surface data of an existing part using a scanning device. In recent years, as the non-contact type scanning devices become more popular, the huge amount of point data can be obtained with high speed. The point data handling process, therefore, becomes more important since the scan data need to be refined for the efficiency of subsequent tasks such as mesh generation and surface fitting. As one of point handling functions, the cross-sectioning function is still frequently used for extracting the necessary data from the point cloud. The commercial reverse engineering software supports cross-sectioning functions, however, these are only for cross-sectioning the point cloud with the constant spacing and direction. In this paper, adaptive cross-sectioning point cloud which allow the changes of the spacing and directions of cross-sections according to the constant spacing and direction. In this paper, adaptive cross-sectioning algorithms which allow the changes of the spacing and directions of cross-sections according to the curvature difference of the point cloud data are proposed.

  • PDF