• Title/Summary/Keyword: plug seedling.

Search Result 138, Processing Time 0.034 seconds

Use of Phenolic Foam as a Medium for Production of Plug Seedlings of Paprika (Phenolic Foam 배지를 이용한 파프리카의 플러그묘 생산)

  • Park, Ji-Eun;An, Chul-Geon;Jeong, Byoung-Ryong;Hwang, Seung-Jae
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2012
  • The study was conducted in a glasshouse to examine the possibility of producing paprika plug seedlings in a newly developed inert phenolic foam growing medium. Plug seedlings of 'Fascinato' paprika were grown in five media, Grodan rockwool (Grodan Co. Ltd., Denmark), UR rockwool (UR Co. Ltd., Korea), phenolic foam LC (Smithers Oasis Korea Co. Ltd., Korea), phenolic foam RC, and phenolic foam 3813-4 all in a pellet type. Seeds were germinated in a growth chamber ($25^{\circ}C$, 90% RH, dark) for 4-5 days and then seedlings were grown in a glasshouse with nutrient solution supplied by an overhead irrigation system. Seedling growths were measured 20 days after sowing. The medium pH was the highest in the Grodan rockwool, and medium EC was the highest in phenolic foam 3813-4, although no nutritional excess disorders were observed. Germination rates of paprika were higher than 90% in all the media. Plant height, stem diameter, T/R ratio, leaf area, and chlorophyll showed a similar to those in the rockwool medium. Number of leaves, length of the longest root and dry weights of shoot were not significantly different among treatments. Overall, phenolic foam LC and RC produced seedlings with a similar growth as the rockwool medium. The results obtained suggest that rockwool can be replaced with a new material such as phenolic foam in the commercial scale production of plug seedlings of 'Fascinato' paprika.

Growth and Seedling Quality of Grafted Cucumber Seedlings by Different Cultivars and Supplemental Light Sources of Low Radiation Period and Early Yield of Cucumber after Transplanting (보광 광원 종류에 따른 약광기 품종별 오이 접목묘의 생육과 묘소질 및 정식 후 초기 과실 수량)

  • Hyeong Eun Choi;So Yeong Hwang;Ji Hye Yun;Jin Yu;Jeong Hun Hwang;Eun Won Park;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.319-327
    • /
    • 2023
  • To harvest marketable cucumbers, high quality seedlings must be used. Producing seedlings in the greenhouse during the low radiation period decreases marketability due to insufficient light for growth. Supplemental lighting with artificial light of different quality can be used to improve low light conditions and produce high quality seedlings. Therefore, this study was conducted to select the appropriate supplemental light sources on the growth and seedling quality of grafted cucumber seedlings during the low radiation period. Three cultivars of cucumber were used as scions for grafting; 'NakWonSeongcheongjang', 'Sinsedae', and 'Goodmorning baekdadagi'. Figleaf gourd (Cucurbita ficifolia) 'Heukjong' was used as the rootstock. The seeds were sown on January 26, 2023, and grafted on February 9, 2023. After graft-taking, cucumbers in plug trays were treated with RB light-emitting diodes (LED, red and blue LED, red:blue = 8:2), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp), respectively. Non-treatment was used as the control. Supplemental lighting was applied 2 hours before sunrise and 2 hours after sunset for 19 days. The stem diameter and fresh and dry weights of roots did not differ significantly by supplemental light sources. The plant height and hypocotyl length were decreased in W LED. However, the leaf length, leaf width, leaf area, and fresh and dry weights of shoots were the highest in the RB LED. Seedling qualities such as crop growth rate, net assimilation rate, and compactness were also increased in RB LED and W LED. After transplanting, most of the growth was not significant, but early yield of cucumber was higher in LED than non-treatment. In conclusion, using RB LED, W LED for supplemental light source during low radiation period in grafted cucumber seedlings improved growth, seedling quality, and early yield of cucumber.

The Growth of Cucumber Seedlings Grown in Paper Pot Trays Affected by Nutrient Management During Seedling Period, Seedling Age, and Night Temperature After Transplanting (종이포트 묘 육묘시 양분관리, 육묘일수 및 정식 후 야온에 따른 오이의 생육)

  • Jang, Yoonah;An, Sewoong;Chun, Hee;Lee, Hee Ju;Wi, Seung Hwan
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.396-403
    • /
    • 2019
  • This study was conducted to investigate the growth of grafted cucumber seedlings in biodegradable paper pot trays influenced by seedling age, nutrient management before transplanting, and night temperature after transplanting. Grafted cucumber seedlings in paper pot trays were supplied with different nutrient solution concentrations of 0.5 x full strength (S) (EC $0.8dS{\cdot}m^{-1}$), 1.0S(EC $1.6dS{\cdot}m^{-1}$), 2.0S(EC $3.2dS{\cdot}m^{-1}$) two times a week until transplanting. 26, 33, 40, and 47 day-old cucumber grafted seedlings were transplanted and grown at three levels of night temperature (10, 15, and $25^{\circ}C$) during ten days. Increasing nutrient solution concentration enhanced the shoot length, number of leaves, leaf area, dry weight, and relative growth rate of seedlings. With increasing seedling age, the differences in growth were greater among nutrient treatments. The dry matter percentage increased with the seedling age, but was lower with higher nutrient concentration. The specific leaf area showed the opposite results. In cucumbers transplanted at 26- or 33-day seedling ages, night temperature did not affect the growth at ten days after transplanting. However, the growth of 40 or 47 day-old seedling decreased at $10^{\circ}C$. Compared with $25^{\circ}C$, the dry weight of cucumbers transplanted at 40- or 47-day seedling ages was depressed by 58% or 71%, respectively, at $10^{\circ}C$. Accordingly, it was concluded that the optimum nutrient solution concentrations and seedling age for the production of grafted cucumber seedlings in biodegradable paper pot trays can be 1.0S and about 30 days, respectively, and night temperature should be maintained at the range of $15-25^{\circ}C$ for promoting the growth after transplanting.

Effects of Rice Hull Cover for Seed Germination, Types of Tray and Soil, Shading Conditions for Seedling Growth of Codonopsis pilosuala (왕겨 피복에 따른 만삼 종자발아와 육묘를 위한 트레이, 토양 및 차광처리 효과)

  • Lee, Su Gwang;Ku, Ja Jung;Cho, Won Woo;Kang, Ho Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.66-73
    • /
    • 2013
  • This study was conducted to determine the effects of rice hull cover on seed germination and tray types, soil types, shading conditions for seedling growth of Codonopsis pilosuala. We also examined the feasibility of cultivation of small seedlings transplanted in the Gyeonggi-do area for a month. Under control condition, the seed germination was 8% whereas it dramatically increased to 78% under rice hull cover treatment. Under the different conditions (tray types, soil types, and shading conditions), young seedlings showed the best quality without shading in TKS soil of 50 plug cell tray, with the growth characteristics of plant height (11.9 cm), number of leaves (71), leaf width (3.1 cm), leaf length (2.6 cm), and root length (14.3 cm). Seedling quality was the best without any shading in TKS+perlite, with the physiological characteristics of evaporation (3.9 $mmol{\cdot}m^{-2}s^{-1}$), carbon assimilation (9.1 ${\mu}mol{\cdot}m^{-2}s^{-1}$), and water use efficiency (2.2 ${\mu}mol{\cdot}m^{-2}s^{-1}$). Considering the economical, morphological, physiological and survival rate of the seedlings, it was an ideal method for transplanting seedlings in the field after they have been grown for 30-45 days in TKS and TKS+perlite of 200 plug cell tray in 0% or 30% shaded conditions. As the results of 5 months examination on the possibility to cultivate Codonopsis pilosuala in the Gyeonggi-do area, 88% to 96% of survival rate was observed with normal induced flowers. Therefore, cultivation of Codonopsis pilosuala was possible in the Gyeonggi-do area. While there were symptoms of etiolation and wilting under no shading condition, they did not appear in 30% and 70% shading conditions. Therefore, cultivation of Codonopsis pilosuala is considered to be necessary 30% or 70% shading.

Appropriateness Evaluation of Plug Seedling Cultivation of Rehmannia glutinosa (지황의 플러그 육묘재배 적정성 평가)

  • Lee, Sang-Hoon;Lee, Yoon-Jeong;Oh, Myeong-Won;Lee, So-Hee;Koo, Sung-Cheol;Hur, Mok;Lee, Woo-Moon;Chang, Jae-Ki;Kim, Ei-Hyun;Han, Jong-Won
    • Korean Journal of Plant Resources
    • /
    • v.33 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • This study was conducted to evaluate the appropriateness cultivation of R. glutinosa by plug seedling. Cultivation by direct seeding (DS) and plug seedling (PS) of R. glutinosa was conducted in each of the Pyeongchang and Eumseong areas. As a result, locally, for the Eumseong area, aerial parts in leaf length, leaf width and number of leaves per plant were better than for the Pyeongchang area. In the cultivation method, leaf width and number of leaves per plant were better with PS cultivation than with DS cultivation. Locally, rhizome yield of underground parts in the Eumseong area was better than that in the Pyeongchang area, but the rhizome yield with DS cultivation in the Eumseong area and PS cultivation in the Pyeongchang area were statistically the same. The fresh rhizome yield for DS in Eumseong, PS in Eumseong, DS in Pyeongchang and PS in Pyeongchang was 1,253 kg/10a, 1,376 kg/10a, 923 kg/10a and 1,256 kg/10a, respectively. Finally, the catalpol content for DS in Eumseong, PS in Eumseong, DS in Pyeongchang and PS in Pyeongchang was 3.67%, 2.03%, 2.96% and 1.60%, respectively. From these results, it can be seen that the R. glutinosa PS cultivation method can increase the rhizome yield.

Growth of 'Nokkwang' Hot Pepper Plug Seedlings as Influenced by Various Ratios of Pre-planting NH4+:NO3- in Root Substrate (상토에 기비로 혼합된 NH4+:NO3- 비율에 따른 '녹광' 고추 플러그 묘의 생장)

  • Oh, Sang Se;Park, Myong Sun;Kim, Hyun Cheul;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.110-116
    • /
    • 2019
  • This study was conducted to determine the effects of a pre-planting fertilizers with various $NH_4{^+}:NO_3{^-}$ ratios in a coir dust:peatmoss:perlite (3.5:3.5:3.0, v/v/v) medium on the growth of hot pepper (Capsicum annuum L. cv. Nokkwang) plug seedling. Nitrogen levels were fixed to $300mg{\cdot}L^{-1}$ and the $NH_4{^+}:NO_3{^-}$ ratios were varied to 0:100, 27:73, 50:50, 73:27, and 100:0. The 50-cell trays were filled with treatment media containing pre-plant fertilizers, then seeds were sown. After seeds were germinated, the trays were moved to greenhouse and seedlings were feed with 13-2-13 and 20-9-20 fertilizers, alternatively. The changes in pH and EC were measured every week and soil solution for nutrient concentrations were analyzed in week 0, 3, and 7. The measurements of seedling growths as well as analysis of tissue nutrient contents were also conducted in week 7. The varied $NH_4{^+}:NO_3{^-}$ ratios did not influence on the pHs of root media after incorporation of pre-planting fertilizers, but the ECs were heightened as proportion of $NH_4{^+}$ to $NO_3{^-}$ were elevated. During the raising of seedlings, the pHs rose over time in the treatments of 0:100 and 27:73 ($NH_4{^+}:NO_3{^-}$). The concentrations of all macro-elements in root media decreased gradually as seedlings grew in all treatments. The seedling growths 7 weeks after seed sowing were the highest in the treatments of 27:73 and 50:50 ($NH_4{^+}:NO_3{^-}$) and those became worse in the treatments of higher $NH_4{^+}$ ratios than 73%. In terms of inorganic element contents based on the dry weight of above ground tissue, the treatment of 0:100 showed the lowest content of Ca, Mg, Na, Cu, Mn, and Zn. Based on the results, it is desired that $NH_4{^+}$ ratio in pre-planting fertilization is maintained to be 50% or less for the raising of hot pepper plug seedlings.

Appropriate Cold Treatment Periods and Shading Levels on Codonopsis lanceolata for Plug Seedling Production in Summer Season (더덕 플러그묘의 하절기 생산을 위한 적정 저온처리 기간과 차광 수준)

  • Eun Won Park;Jeong Hun Hwang;Hee Sung Hwang;Hyeon Woo Jeong;So Yeong Hwang;Jin Yu;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • Codonopsis lanceolata (S. et Z.) Trautv. is mainly cultivated in Korea and China as a medicinal crop. C. lanceolata is difficult to produce plug seedlings in the summer, because C. lanceolata has a low germination rate and is vulnerable to high temperatures. Cold treatment is effective in breaking dormancy of seeds and increasing the germination rate. Shading cultivation can control the solar irradiance received by plants and reduce the damage by high temperatures and strong light. This study was conducted to examine the appropriate cold treatment period for the improving germination of C. lanceolata, and shading level during the summer seedling period. Cold treatment experiments were conducted for 0 (control), 1, 2, 3, and 4 weeks at 4℃ before sowing. In the shading experiment, C. lanceolata was grown for 45 days with 0 (non-treatment), 45, 75% shading levels. Cold treatment for one week significantly improved the germination energy. The plant height, leaf area, and fresh and dry weights of C. lanceolata seedlings were significantly increased under the 45% shading level. Total root length, root surface area, and the number of root tips were significantly higher in shading treatment (45 and 75%) than in non-treatment. The C. lanceolata seedling's compactness and Dickson's quality index were the highest at 45% shading level. Therefore, these results recommended sowing C. lanceolata after cold treatment for one week at 4℃, and 45% shading level could stably culture C. lanceolata plug seedlings during the high temperature period.

Analysis of Working Capacity of a Hand-fed Transplanter (반자동정식기 작업 성능 분석)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.159-167
    • /
    • 1997
  • To cope with the mass-production and supply of plug seedling, the supply of transplanters is necessary. In the study, a transplanting test was carried out to find the optimum working condition in the mechanizd transplantation and to acquire the basic data for the improvement of transplanters by the research and analysis of working capacity of the local manual transplanters. The size of hopper affected transplanting stand and rate. Re-irrigation was required for the transplanted seedlings because they wilt 1 day after the transplanting if soil compaction is incomplete. Consequently, back-forth-left-right compaction method was good for soil covering and compaction. It may be thought to increase the amount of irrigation water at the time of transplanting by double-irrigation mechanism, but it needs to increase the larger water tank which makes the operation uneasy. So, assuming the working model by 1 or 2 operators with the machine size as small as possible, it seemed that eliminating of automatic irrigation method was desirable in view of efficiency. Though semiautomatic transplanter needs some structural improvements, it seemed still suitable for transplanting of plug seedlings such as 45-day red pepper seedlings in 128-hole tray and 25-day Chinese cabbage seedling in 128-hole tray. If traveling speed of the transplanter is limited to less than 14 m/min, with the transplanting depth of 2~3cm and transplanting space of 30cm.

  • PDF

Influences of Difference between Day and Night Temperatures (DIF) on Growth and Development of Bell Pepper Plants before and after Transplanting (단고추(피망) 육묘시 주야간 온도차(DIF)가 플러그묘 생장과 정식후 식물의 생육에 미치는 영향)

  • 임기병;손기철;정재동;김종기
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.15-25
    • /
    • 1997
  • Plug seedlings of bell pepper(Capsicum annuum L.) were grown for 50 days in controlled environment chambers under 12 hrs per day photoperiodic condition with sixteen different day and night temperature regimes to investigate the possibility of height control. The seedlings were then transplanted to greenhouse to investigate the growth, flowering, and yield afterward. Plant height and stem length of seedlings were mainly affected by day temperature rather than night temperature. Internode elongation was suppressed by a negative DIF and was enhanced by a positive DIF even with the same average daily temperature (ADT). Leaf unfolding rate was influenced more by ADT than by DIF. Fresh and dry weights increased as ADT increased. Leaf area and stem diameter increased until temperature increased up to 24$^{\circ}C$ day and night temperature and decreased above 24$^{\circ}C$, The position at which the first flower was initiated was lowered as ADT increased. The first flower degeneration was not obvious up to 24$^{\circ}C$ ADT but increased rapidly above 24$^{\circ}C$ ADT. Seedling compactness(Dry weight per plant height :mg.mm$^{-1}$ ) was greater under -DIF than +DIF condition. In conclusion, DIF treatment was an applicable technique to control stem elongation and growth rate such as leaf unfolding rate and position at which first flower was initiated could be controlled by ADT.

  • PDF

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season (동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격)

  • Kim, Hye Min;Jeong, Hyeon Woo;Hwang, Hee Sung;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.