• 제목/요약/키워드: plug flow reactor

검색결과 60건 처리시간 0.023초

혼합공정과 부착성장공정을 조합한 2단계 혐기 조합공정에서 palm oil mill effluent의 처리 (Treatment of palm oil mill effluent using 2 stage reactors combined anaerobic hybrid reactor and anaerobic attached growth reactor)

  • 신창하;손성민;정주영;박주양
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.21-29
    • /
    • 2013
  • Present study was conducted to evaluate the performance of Anaerobic Hybrid Reactor (AHR) combined with two types of anaerobic attached growth reactors at mesophilic temperature ($37^{\circ}C$). The reactor was operated at the influent substrate condition of 19,400 mg/L soluble chemical oxygen demand (sCOD). The organic loading rate (OLR) and flow rate were varied in the range of $9.5{\sim}22.5kg/m^3$. day and 10.6 ~ 26.0 L/day respectively since start-up was done. The COD removal efficiency of 93 % was measured at the OLR of $14kg/m^3$. day in AHR. However a reduction in removal efficiency to as low as 85 % could have been related to a combined effect of high concentration suspended solids (SS) concentration over 3,800 mg/L. On the other hand the total COD removal efficiencies were measured to be 96.3 % and 96.2 % for AHR+APF and AHR+ADF respectively. The pH of the POME was adjusted to neutral range by using sodium bicarbonate at the initial stages of the reactor feed, later stages pH adjustment was not required as the pH was maintained in the desired neutral range due to self-buffering capacity of the reactor. The reactor proved to be economically acceptable and operationally stable. The biogas was measured to have $CH_4$ and $CO_2$ with a ratio of 35:65, and methane gas production rate was estimated to be $0.17{\sim}10.269L\;CH_4/g\;COD_{removed}$.

가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석 (CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR)

  • 인왕기;신창환;박주용;오동석;이치영;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구 (The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process)

  • 김민식;강구영
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor

  • Chang, Young-C.;Park, Chan-Koo;Jung, Kweon;Kikuchi, Shintaro
    • 한국환경보건학회지
    • /
    • 제36권4호
    • /
    • pp.323-336
    • /
    • 2010
  • We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.

MATHEMATICAL MODEL OF SULFUR UTILIZING AUTOTROPHIC DENITRIFICATION IN AN UP-FLOW PACKED-BED REACTOR BASED ON BIOMASS DISTRIBUTION

  • Park, Woo-Shin;Ahn, Yoeng-Hee;Jung, Kyung-Ja;Tatavarty, Rameshwar;Kim, In-S.
    • Environmental Engineering Research
    • /
    • 제10권4호
    • /
    • pp.191-198
    • /
    • 2005
  • A novel technology for the removal of nitrogen from wastewater, an autotrophic denitrification process with sulfur particles, has been developed. A respirometer was employed to monitor the nitrogen gas produced in the reactor, while 4',6-diamidino-2-phenylindole staining was employed to investigate the biomass distribution in terms of cell number according to the reactor height. From the respirometric monitoring, the denitrification reaction was defined as a first order reaction. The reactor was divided into 7 sections and biomass was analyzed in each section where cell number was ranged from $4.8\;{\times}\;10^6\;to\;8.7\;{\times}\;10^7$ cells/g dry weight of sulfur. Cells placed mostly in the lower layer ( < 10 cm of height). A function for biomass distribution was obtained with non-linear regression. Then a mathematical model has been developed by combining a plug-flow model with the biomass distribution function. The model could make a vertical profile of the up-flow packed-bed reactor resulting in a reasonable comparison with measured nitrate concentration with 5% of error range.

중온혐기성소화조에서 외부 $CO_2$ Stripping을 이용한 In-situ 고순도 메탄회수 공정 개발 (In-situ Methane Enrichment System Coupled with External $CO_2$ Stripper in Mesophilic Anaerobic Digestion)

  • 강호;정지현;임선애;이혜미
    • 대한환경공학회지
    • /
    • 제34권3호
    • /
    • pp.155-161
    • /
    • 2012
  • 본 연구에서는 고순도 메탄을 회수하기 위해서 Plug Flow Reactor와 External $CO_2$ Stripper를 결합한 중온 Methane Enhancement System을 개발하였다. 반응조 운전인자로서 알칼리도와 Leachate 순환율(LRR, Leachate Recycle Rate)이 바이오가스의 조성과 생성량 및 TVS 제거효율에 미치는 영향을 규명하였다. 고순도 메탄회수 공정 운전결과 OLR 2 g TVS/L-d, 알칼리도 4 g/L as $CaCO_3$, Leachate 순환율 3 v/v-d일 때 평균 94%의 높은 메탄함량을 나타내 고순도 메탄회수를 위한 최적조건임이 밝혀졌다. 이때 1일 반응조 단위 부피당 0.71부피의 메탄이 생성되었으며, TVS 제거율은 79%로서 Control Reactor의 94% 수준을 달성하였다.

다단 수직형 혐기성 소화조를 이용한 유기성 폐기물 바이오가스화 기술 (The Bio Gasification technology of organic waste using vertical multistage anaerobic digester)

  • 이종학;엄영경;김영노
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.15-20
    • /
    • 2012
  • 유기성폐기물의 처리 방식은 친환경적이고 지속가능한 에너지 회수 및 슬러지 발생량의 저감이 가능한 혐기성 소화를 통한 에너지화로 전환되고 있다. 본 연구에서는 PFR 흐름(Plug Flow Reactor)과 수직 다단형 구조로 고농도 고형분과 높은 유기물 부하에 견딜 수 있도록 개발된 ECOPAD(ECOdays' Plug-flow Anaerobic Digster) 혐기성 소화 공법의 음식물 폐기물과 도계폐수에 대한 적용성과 효율을 파악하였다. 적용사례별 ECOPAD의 처리효율을 분석한 결과 P시와 S시의 음식물 폐기물 처리시설의 유기물 제거효율은(VS 기준 P시 84%, S시 88%) 였으며, 이때 발생하는 바이오가스량(P시: $1.1Nm^3/kg$-VSrem, S시 $1.0Nm^3/kg$-VSrem)과 메탄가스의 함유량(P시 70%, S시 71%)은 유사하게 측정되었다. 도계 폐수 슬러지의 경우 VS당 가스발생량은 $1.6Nm^3/kg$-VSrem로 측정되었으며, 메탄 함량은69%로 측정되었다.

단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성 (Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle)

  • 김종철;장서일;손민일;김태옥
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.816-821
    • /
    • 1997
  • 기체분산기로 단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성을 해석하였다. 실험은 공기-물계에서 기체속도와 반응기의 높이를 변화시키면서 국부지역의 기체체류량과 추적자의 충격-응답곡선을 측정하였다. 실험결과, 약 8 cm/s이상의 기체속도에서 상승관은 기포가 강한 합체를 일으키는 난류흐름을 나타내었고 하강관에서는 균일한 크기의 큰 기포들이 분산된 지역까지의 축방향 높이가 기체속도의 증가에 따라 감소하였다. 그리고 국부지역과 반응기 전체의 평균 기체체류량은 기체속도가 증가할수록 증가하였고 반응기 상부지역의 높이가 증가할수록 감소하였다. 또한 혼합시간은 기체속도보다 반응기 상부지역의 높이에 크게 영향을 받으며 이들이 증가할수록 감소하였다. 상승관과 하강관에서 액체의 흐름은 플러그흐름에 근접하였고 환전혼합흐름으로 볼 수 있는 반응기 상부지역의 크기에 따라 반응기 전체의 액체흐름특성이 크게 변화하였다. 이때 액체의 순환속도는 기체속도가 증가할수록 증가하였고 다른 기체분산기에서 보다 상당히 큰 값을 나타내었다.

  • PDF

Effects of Acrylonitrile and Acrylamide on Nitrile Hydratase Action of Brevibacterium sp. CH1 and CH2

  • Lee, Cheo-Young;Hwang, Jun-Sik;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.182-187
    • /
    • 1991
  • The effects of acrylonitrile and acrylamide on the enzyme action of nitrile hydratase of Brevibacterium sp. CH1 and CH2 strains used for the biotransformations of nitriles were studied. The excessive substrate (acrylonitrile) and product (acrylamide) inhibited the enzyme activity competitively. In comparison with 0.2 mol/l of CH1 strain, the substrate inhibition of CH2 strain began to appear only at a high acrylonitrile concentration of 0.91 mol/l. In a packed bed reactor, dispersed plug flow model was proposed and this model was proved to be valid by the experiment. Also acrylamide productivity decreased sharply when acrylamide concentration in the substrate solution exceeded 20% (wt/v).

  • PDF

Simultaneous Nitrification and Denitrification by Anaerobic-Aerobic Biological Packed Bed Process

  • Lee, Min-Gye;Ju, Chang-Sik;Lee, Byung-Hyun;Kim, Jung-Kyun;Tadashi Hano
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.40-43
    • /
    • 1999
  • In the wastewater treatment experiment by anaerobic-aerobic packed bed unit, it was found that the high and stable removal efficiency of nitrogen could be obtained. The extent of nitrogen removal gradually decreased with the rise of recycle ratio and DO concentration. On the other hand, the extent of phosphorus increased with the increase of DO concentration. COD showed high removal efficiency over the entire range tested. The simulation of T-N behavior was carried out satisfactorily by using the kinetic equations for biofilm and the reactor model which considered the packed bed as a plug flow reactor.