• Title/Summary/Keyword: plotting position

Search Result 46, Processing Time 0.025 seconds

Comparative Analysis of Flood Frequncy by Moment and L-moment in Weibull-3 distribution (Weibull-3 분포모형의 모멘트법 및 L-모멘트법에 의한 홍수빈도비교분석)

  • 이순혁;맹승진;송기헌;류경식;지호근
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.331-337
    • /
    • 1998
  • This study was carried out to derive optimal design floods by Weibull-3 distribution with the annual maximum series at seven watersheds along Man, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was acknowledged by the tests of Independence, Homogeneity, detection of Outliers. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in Weibull-3 distribution were compared by the rotative mean error and relative absolute error. It has shown that design floods derived by the method of L-moments using Weibull plotting position formula in Weibull-3 distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.

  • PDF

Comparative Analysis of Deisgn Low Flow by L-moment in the Weibull-3 and Wakeby distributions (Weibull-3 및 Wakeby 분포모형의 L-모멘트법에 의한 설계갈수량 비교분석)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.45-55
    • /
    • 2000
  • This study was carried out to derive optimal design low flows bythe Weibull-3 and Wakeby distributions for the partial consecutive duration series at seven watersheds along Han. nagdong, Geum Yeongsan and Seomjin river systems. L-coefficient of variation L-skewness and L-kurtosis were calculated by the L-moment ratio respectively. Parameters were estimated by the method of L-Moments with consecutive duration. Design low flows obtained by method of L-Moments using with consecutive duration, Design low flows obtained by method of L-Moments using different methods for plotting positions formulas in the Weibull-3 and Wakeby distributions were compared by the Root Mean Square Errors(RMSE). It has shown that design low flows derived by the method of L-moments using Weivull plotting position formula in Wakeby distribution were much closer to those of the observed data in comparison with those obtained by the methods of L-moments with the different formulas for plotting positions in Weibull-3 distribution from the viewpoint of Root Mean Square Errors.

  • PDF

Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(II) -On the Generalized Gamma Distribution Model- (Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도(II) -Generalized Gamma 분포모형을 중심으로-)

  • 이순혁;박명근;맹승진;정연수;류경선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.59-68
    • /
    • 1998
  • This study was conducted to derive optimal design floods by generalized gamma distribution model of the annual maximum series at eight watersheds along Geum, Yeongsan and Seomjin river systems. Design floods obtained by different methods for evaluation of parameters and for plotting positions in the generalized gamma distribution model were compared by the relative mean errors and graphical fit along with 95% confidence limits plotted on gamma probability paper. The results were analyzed and summarized as follows. 1. Basic statistics and parameters were calculated by the generalized gamma distribution model using different methods for parameters. 2. Design floods according to the return periods were obtained by different methods for evaluation of parameters and for plotting positions in the generalized gamma distribution model. 3. It was found that design floods derived by sundry averages method for parameters and Cunnane method for plotting position in the generalized gamma distribution are much closer to those of the observed data in comparison with those obtained by the other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4. Reliability of design floods derived by sundry averages method in the generalized gamma distribution was acknowledged within 95% confidence interval.

  • PDF

A Study on Computerization of the Sight Reduction (천측계산의 전산화에 관한 연구)

  • 윤여정
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.1
    • /
    • pp.27-43
    • /
    • 1988
  • The tedious work, connected to the altitude correction, the computation of altitudes and aximuths and the plotting of the position lines, has been a objection to celestial position fixing method. But using a computer , the severe objection will be practically overruled. The author had already studied on computerization of the sight reduction partially. This paper is to confirm reliability of coordinate of the moon and the navigational planet calculated by computer programming and to suggest a method of calculating ship's position fixed by two position lines.

  • PDF

Estimation of Reservoir Inflow Using Frequency Analysis (빈도분석에 의한 저수지 유입량 산정)

  • Maeng, Seung-Jin;Hwang, Ju-Ha;Shi, Qiang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was carried out to select optimal probability distribution based on design accumulated monthly mean inflow from the viewpoint of drought by Gamma (GAM), Generalized extreme value (GEV), Generalized logistic (GLO), Generalized normal (GNO), Generalized pareto (GPA), Gumbel (GUM), Normal (NOR), Pearson type 3 (PT3), Wakeby (WAK) and Kappa (KAP) distributions for the observed accumulative monthly mean inflow of Chungjudam. L-moment ratio was calculated using observed accumulative monthly mean inflow. Parameters of 10 probability distributions were estimated by the method of L-moments with the observed accumulated monthly mean inflow. Design accumulated monthly mean inflows obtained by the method of L-moments using different methods for plotting positions formulas in the 10 probability distributions were compared by relative mean error (RME) and relative absolute error (RAE) respectively. It has shown that the design accumulative monthly mean inflow derived by the method of L-moments using Weibull plotting position formula in WAK and KAP distributions were much closer to those of the observed accumulative monthly mean inflow in comparison with those obtained by the method of L-moment with the different formulas for plotting positions in other distributions from the viewpoint of RME and RAE.

Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(I) - On the Gamma Distribution Models - (Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도 (I) -Gamma 분포 모형을 중심으로-)

  • 이순혁;박명근;정연수;맹승진;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.83-95
    • /
    • 1997
  • This study was conducted to derive optimal design floods by Gamma distribution models of the annual maximum series at eight watersheds along Geum , Yeong San and Seom Jin river Systems, Design floods obtained by different methods for evaluation of parameters and for plotting positions in the Gamma distribution models were compared by the relative mean errors and graphical fit along with 95% confidence interval plotted on Gamma probability paper. The results were analyzed and summarized as follows. 1.Adequacy for the analysis of flood flow data used in this study was confirmed by the tests of Independence, Homogeneity and detection of Outliers. 2.Basic statistics and parameters were calculated by Gamma distribution models using Methods of Moments and Maximum Likelihood. 3.It was found that design floods derived by the method of maximum likelihood and Hazen plotting position formular of two parameter Gamma distribution are much closer to those of the observed data in comparison with those obtained by other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4.Reliability of derived design floods by both maximum likelihood and method of moments with two parameter Gamma distribution was acknowledged within 95% confidence interval.

  • PDF

Derivatio of Optimal Design Flood by L-Moments and LH-Moments(II) - On the method of LH-Moments - (L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도(II)-LH-모멘트법을 중심으로)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.41-50
    • /
    • 1999
  • Derivatio of reasonable design floods was attempted by comparative analysis of design floods derived by Generalized Extreme Value(GEV) distribution using methods of L-moments and LH-moments for the annual maximum series at ten watersheds along Han, Nagdong. Geum, Yeongsan and Seomjin river systems, LH-coefficient of variation, LH-skewness and Lh-kurtosis were calcualted by KH-moment ration respectively. Paramenters were estimated by the Method of LH-Moments, Design floods obtained by Method of LH-Moments using different methods for plotting positionsi n GEV distribution and design floods were compared with those obtained using the Method of L-Moments by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results was found that design floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position formula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors. In viewpoint of the fact that hydrqulic structures including dams and levees are genrally using design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

An Application of the Probability Plotting Positions for the Ln­least Method for Estimating the Parameters of Weibull Wind Speed Distribution (와이블 풍속 분포 파라미터 추정을 위한 Ln­least 방법의 확률도시위치 적용)

  • Kang, Dong-Bum;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.11-25
    • /
    • 2018
  • The Ln-least method is commonly used to estimate the Weibull parameters from the observed wind speed data. In previous studies, the bin method has been used to calculate the cumulative frequency distribution for the Ln-least method. The purpose of this study is to obtain better performance in the Ln-least method by applying probability plotting position(PPP) instead of the bin method. Two types of the wind speed data were used for the analysis. One was the observed wind speed data taken from three sites with different topographical conditions. The other was the virtual wind speed data which were statistically generated by a random variable with known Weibull parameters. Also, ten types of PPP formulas were applied which were Hazen, California, Weibull, Blom, Gringorten, Chegodayev, Cunnane, Tukey, Beard and Median. In addition, in order to suggest the most suitable PPP formula for estimating Weibull parameters, two accuracy tests, the root mean square error(RMSE) and $R^2$ tests, were performed. As a result, all of PPPs showed better performances than the bin method and the best PPP was the Hazen formula. In the RMSE test, compared with the bin method, the Hazen formula increased estimation performance by 38.2% for the observed wind speed data and by 37.0% for the virtual wind speed data. For the $R^2$ test, the Hazen formula improved the performance by 1.2% and 2.7%, respectively. In addition, the performance of the PPP depended on the frequency of low wind speeds and wind speed variability.

Determining Floodflows from Basin Characteristic Parameters (유역특성인자(流域特性因子)에 의한 홍수량(洪水量)의 결정(決定))

  • Ahn, Sang Jin;Ryu, Byong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1983
  • The purpose of this study is to provide a method of estimating the frequency of flood magnitudes in ungauged station. Six major station are selected for this study in the Geum River system. For each gauging station in the basin, T-year flood is determined by Weibull plotting position. The derivation of the flood frequency formulae is performed on the basis of estimating method of floods with using the hydrological and geomorphical factors developed by U.S. Geological Survey. It is found that the model in this study can be applied to flood flow estimation of ungauged station in the Geum River basin because the mean characteristics of flood flow is used for the basin.

  • PDF

A Study on Automation about Painting the Letters to Road Surface

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • In this study, the researchers attempted to automate the process of painting the characters on the road surface, which is currently done by manual labor, by using the information and communication technology. Here are the descriptions of how we put in our efforts to achieve such a goal. First, we familiarized ourselves with the current regulations about painting letters or characters on the road, with reference to Road Mark Installation Management Manual of the National Police Agency. Regarding the graphemes, we adopted a new one using connection components, in Gothic print characters which was within the range of acceptance according to the aforementioned manual. We also made it possible for the automated program to recognize the graphemes by means of the feature dots of the isolated dots, end dots, 2-line gathering dots, and gathering dots of 3 lines or more. Regarding the database, we built graphemes database for plotting information, classified the characters by means of the arrangement information of the graphemes and the layers that the graphemes form within the characters, and last but not least, made the character shape information database for character plotting by using such data. We measured the layers and the arrangement information of the graphemes consisting the characters by using the information of: 1) the information of the position of the center of gravity, and 2) the information of the graphemes that was acquired through vertical exploration from the center of gravity in each grapheme. We identified and compared the group to which each character of the database belonged, and recognized the characters through the use of the information gathered using this method. We analyzed the input characters using the aforementioned analysis method and database, and then converted into plotting information. It was shown that the plotting was performed after the correction.