• Title/Summary/Keyword: plating solution

Search Result 333, Processing Time 0.021 seconds

A Study on Improving the Current Density Distribution of the Cathode by the Bipolar Phenomenon of the Auxiliary Anode through the Hull Cell Experiment (헐셀을 통한 보조 양극의 바이폴라 현상에 의한 음극의 전류밀도 분포 개선 영향성 연구)

  • Young-Seo Kim;Yeon-Soo Jeong;Han-Kyun Shin;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2023
  • The possibility of improving plating thickness distribution was investigated through quantitative consideration of bipolar electrodes without external power applied. By having the cathode tilted with respect to the anode, the potential distribution in the electrolyte solution adjacent to the cathode is different due to the difference in iR drop due to the path difference to the anode in each region of the cathode. The purpose of this study is to observe the bipolar characteristics in the case of an auxiliary anode for the non-uniform potential distribution of such a Hull cell. In particular, in order to evaluate the possibility of improving the non-uniform thickness distribution of the cathode by utilizing these bipolar characteristics, it was verified through experiments and simulations, and the electric potential and current density distribution around the bipolar electrode were analyzed. The electroplating in a Hull cell was performed for 75 min at a current density of 10 mA/cm2, and the average thickness is about 16 ㎛. The standard deviation of the thickness was 10 ㎛ in the normal Hull cell without using the auxiliary anode, whereas it was 3.5 ㎛ in the case of using the auxiliary cathode. Simulation calculations also showed 8.9 ㎛ and 3.3 ㎛ for each condition, and it was found that the consistency between the experimental and simulation results was relatively high, and the thickness distribution could be improved through using the auxiliary anode by the bipolar phenomenon.

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG) (Electroless Nickel Autocatalytic Gold (ENAG) 표면처리와 Sn-Ag-Cu솔더 간 접합부의 계면반응 및 취성파괴 신뢰성 비교 연구)

  • Jun, So-Yeon;Kwon, Sang-Hyun;Lee, Tae-Young;Han, Deog-Gon;Kim, Min-Su;Bang, Jung-Hwan;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.63-71
    • /
    • 2022
  • In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.