• Title/Summary/Keyword: plating process

Search Result 481, Processing Time 0.026 seconds

The Study on Chip Surface Treatment for Embedded PCB (칩내장형 PCB 공정을 위한 칩 표면처리 공정에 관한 연구)

  • Jeon, Byung-Sub;Park, Se-Hoon;Kim, Young-Ho;Kim, Jun-Cheol;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.77-82
    • /
    • 2012
  • In this paper, the research of IC embedded PCB process is carried out. For embedding chips into PCB, solder-balls on chips were etched out and ABF(Ajinomoto Build-ip Film), prepreg and Cu foil was laminated on that to fabricate 6 layer build-up board. The chip of which solder ball was removed was successfully interconnected with PCB by laser drilling and Cu plating. However, de-lamination phenomenon occurred between chip surface and ABF during reflow and thermal shock. To solve this problem, de-smear and plasma treatment was applied to PI(polyimide) passivation layer on chip surface to improve the surface roughness. The properties of chip surface(PI) was investigated in terms of AFM(Atomic Force Micrometer), SEM and XPS (X-ray Photoelectron Spectroscopy). As results, nano-size anchor was evenly formed on PI surface when plasma treatment was combined with de-smear(NaOH+KMnO4) process and it improved thermal shock reliability ($260^{\circ}C$-10sec solder floating).

Heat Sink of LED Lights Using Engineering Plastics (엔지니어링 플라스틱의 LED조명 방열판 적용)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • As an advance study for the development of a heat sink for special purpose high power illumination, an investigation was made to find feasibility for the application of copper plated EP to a heat sink of small LED light of less than 10W installed in commercial product. In this study, the plated heat sink with EP copper was fabricated for the conventional LED light. It was used actually for finding heat radiation property and effectiveness of the heat sink accompanied with measurement of luminous intensity. The heat is radiated by transfer and dissipation only through the copper plated surface due to extremely low heat conductivity of EP in case of EP heat sink; however the total area of the plate plays the function of heat transfer as well as heat radiation in case of the aluminum heat sink. It seems that the volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W even though heat transfer rate of copper is approximately 1.9 times higher than that of aluminum. It was thought that this is useful to utilize for heat sink for low power LED light with the low heating rate. Also, the illumination could be greatly influenced by the surrounding temperature of the place where it is installed. Therefore, it seems that the illumination installation environment must be taken into consideration when selecting illumination. Further study was expected on order to aims at development of an exterior surface itself made into heat radiation plate by application of this technology in future.

Investigation of the Ni/Cu metal grid space for high-effiency, low cost crystlline silicon solar cells (고효율, 저가화 태양전지에 적합한 Ni/Cu 금속 전극 간격에 따른 특성 평가)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.225-229
    • /
    • 2009
  • The front metal contact is one of the most important element influences in efficiency in the silicon solar cell. First of all selective of the material and formation method is important in metal contacts. Commercial solar cells with screen-printed contacts formed by using Ag paste process is simple relatively and mass production is easy. But it suffer from a low fill factor and a high shading loss because of high contact resistance. Besides Ag paste too expensive. because of depends income. This paper applied for Ni/Cu metallization replace for paste of screen printing front metal contact. Low cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the screen-printed Ag contacts. Ni has been proposed as a suitable silicide for the salicidation process and is expected to replace conventional silicides. Copper is a promising material for the electrical contacts in solar cells in terms of conductivity and cost. In experiments Ni/Cu metal contact applied same grid formation of screen-printed solar cell. And it has variation of different grid spacing. It was verified that the wide spacing of grid finger could increase the series resistance also the narrow spacing of grid finger also implies a grid with a higher density of grid fingers. Through different grid spacing found alteration of efficiency.

  • PDF

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Degradation-Based Remaining Useful Life Analysis for Predictive Maintenance in a Steel Galvanizing Kettle (철강 도금로의 예지보전을 위한 열화 기반 잔존수명 분석)

  • Shin, Joon Ho;Kim, Chang Ouk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.271-280
    • /
    • 2019
  • Smart factory, a critical part of digital transformation, enables data-driven decision making using monitoring, analysis and prediction. Predictive maintenance is a key element of smart factory and the need is increasing. The purpose of this study is to analyze the degradation characteristics of a galvanizing kettle for the steel plating process and to predict the remaining useful life(RUL) for predictive maintenance. Correlation analysis, multiple regression, principal component regression were used for analyzing factors of the process. To identify the trend of degradation, a proposed rolling window was used. It was observed the degradation trend was dependent on environmental temperature as well as production factors. It is expected that the proposed method in this study will be an example to identify the trend of degradation of the facility and enable more consistent predictive maintenance.

Growth of Seeded Escherichia coli in Rewetted Cattle Waste Compost of Different Stages

  • Hanajima, D.;Kuroda, K.;Fukumoto, Y.;Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.278-282
    • /
    • 2004
  • Compost is used mainly as an organic fertilizer, but it is also used as bedding material for cattle. Dairy cattle have been identified as a main reservoir of pathogenic Escherichia coli O157:H7. Further, E. coli is regarded as an environmental pathogen that causes bovine clinical mastitis. Hence, its growth in compost spread or compost bedding should be avoided. Physical and chemical conditions, available nutrients and microflora in compost change greatly during the composting process. Since pathogen growth in compost seems to be related to these changes, we assessed the possibility of E. coli growth in compost samples collected at 0, 7, 13, 22, 41, 190 and 360 d. Cattle waste composts with and without added tofu residue were collected from static piles and immediately air-dried. Compost samples were inoculated with a pure culture of E. coli, the moisture content was adjusted to 50%, and the samples were incubated for 5 d at $30^{\circ}C$. The numbers of E. coli in compost before and after incubation were determined by direct plating on Chromocult coliform agar. Almost all compost samples supported E. coli growth. Samples collected during or immediately after the thermophilic phase (day 7) showed the highest growth. Growth in samples more than 13 d old were not significantly different from those of aged compost samples. The addition of tofu residue gave a higher growth than its absence in younger samples collected prior to 13 d. To minimize the risk of environmental mastitis, the use of compost in the initial stage of the process is better avoided.

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Flow Control Inside a Molten Zn Pot for Improving Surface Quality of Zinc Plated Strips (아연도금강판의 품질향상을 위한 도금욕 내부 유동제어 연구)

  • Choi, Jae-Ho;Koh, Min-Seok;Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1392-1399
    • /
    • 2001
  • The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed Vs, flow rate Q of induction heater. scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the strip speed Vs, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type.

Surface Characterization According to the Bias Voltage of the TiAgN Coating Film Layer Formed by the AIP Process (AIP법으로 형성된 TiAgN 코팅필름의 바이어스전압에 따른 표면 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kang, Byeong-Mo;Jeong, Woon-Jo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.253-257
    • /
    • 2015
  • The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to -500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.

Manufacturing Technique of Gilt-Bronze Objects Excavated from Tomb No.1(Donghachong) in Neungsan-ri, Buyeo

  • Shin, Yong-bi;Lee, Min-hee;Kim, Gyu-ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.453-457
    • /
    • 2020
  • Tomb No. 1 (Donghachong) of the Buyeo Neungsan-ri Tomb complex (listed as UNESCO World Heritage Site), is a royal tomb of the Baekje Sabi Period. One wooden coffin unearthed there is an important relic of the funerary culture of the Baekje. This study examines the production techniques of gilt-bronze objects attached to the wooden coffin excavated from Donghachong. The base metal of the gilt-bronze object is pure copper, with single α phase crystals in a heterogeneous form containing annealing twins; Au and Hg are detected in the gilt layer. We suggest that the surface of the forging copperplate is gilded using a mercury amalgam technique; it is thought that the annealing twins of the base material formed during the heat treatment process for the sheet metal. The gilt layer is three to five times thicker for the gilt-bronze objects found near the foot of the coffin than those near the head. We estimate the plating process is carried out at least three times because three layers are identified on the plate near the head. Therefore, it is likely that the materials and methods used to construct the gilt-bronze objects found in different parts of the coffin are the same, but the number of platings is different. This research confirms the metal crafting techniques used in Baekje by the examination of production techniques of these gilt-bronze objects. Further, our paper presents an important example of restoration and reconstruction for a museum exhibition, through effective use of scientific analysis and investigation.