• 제목/요약/키워드: plates and curved structures

검색결과 26건 처리시간 0.024초

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

변형 이론을 기반으로한 곡면의 최적 근사 전개 (Optimal Approximated Development of General Curved Plates Based on Deformation Theory)

  • 유철호;신종계
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Buckling Strength Increment of Curved Panels Due to Rotational Stiffness of Closed-Section Ribs Under Uniaxial Compression

  • Andico, Arriane Nicole P.;Park, Yong-Myung;Choi, Byung H.
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1363-1372
    • /
    • 2018
  • Recently, there have been studies about the increasing effect on the local plate buckling strength of flat plates when longitudinally stiffened with closed-section ribs and an approximate solution to quantitatively estimate these effects were suggested for flat plates. Since there are few studies to utilize such increasing effect on curved panels and a proper design method is not proposed, thus, this study aims to numerically evaluate such effect due to the rotational stiffness of closed-section ribs on curved panels and to propose an approximate method for estimating the buckling strength. Three-dimensional finite element models were set up using a general structural analysis program ABAQUS and a series of parametric numerical analyses were conducted in order to examine the variation of buckling stresses along with the rotational stiffness of closed-section ribs. By using a methodology that combine the strength increment factor due to the restraining effect by closed-section ribs and the buckling coefficient of the panel curvature, the approximate solutions for the estimation of buckling strength were suggested. The validity of the proposed methods was verified through a comparative study with the numerical analysis results.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

가변금형의 박판 성형공정 적용 연구 (Study on Application of Flexible Die to Sheet Metal Forming Process)

  • 허성찬;서영호;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

곡률을 가진 적층복합재 구조에서의 저속충격손상 평가 (Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • 제14권2호
    • /
    • pp.22-32
    • /
    • 2001
  • 유한한 곡률을 가진 적층복합재 구조의 저속충격손상을 평가하기 위하여 곡률반경이 각각 50, 150, 300, 500 mm인 쉘 형태의 시편을 CFRP로 제작하여 충격실험을 행하고, 충격거동과 충격손상을 평판의 경우와 비교하여 고찰하였다. 실험결과는 비선형 유한요소해석의 결과와 비교하였다. 충격손상의 평가를 위해 충격거동을 측정한 결과 강성과 곡률반경이 쉘의 동적 충격거동에 큰 영향을 미치는 것을 확인하였으며, 충격거동과 충격손상은 밀접한 상호관계가 있으므로 구조의 곡률반경을 독립변수로 선정하여 충격손상을 평가하였다. 곡률반경이 감소하면서 복합재 쉘에는 동일한 충격조건에서 더 큰 최대 접촉력이 발생하였고, 가장 곡률이 심한 곡률반경 50 mm의 쉘에서는 평판의 약 1.5배에 이르는 최대 접촉력을 나타내었다. 따라서 동일한 충격조건 하에서 곡률반경 50 mm의 쉘에서는 평판의 경우보다 약 2.7때정도 더 큰 층간분리가 내부에 발생하였으며, 층간분리의 분포 또한 평판의 경우와는 달리 충격면에 가까운 계면에도 광범위하게 발생하는 경향이 곡륜반경이 감소할수록 더욱 현저하였다. 이는 곡률을 가진 구조가 평판 구조보다 손상저항성이 더 작은 것을 의미하므로 복합재료 설계 시 구조의 기하학적 형상을 반드시 고려하여야 한다.

  • PDF

유도초음파를 활용한 격납건물 라이너 플레이트 상시감시 모니터링 검사를 위한 토모그래피 영상화 (Tomographic Imaging for Structural Health Monitoring Inspection of Containment Liner Plates using Guided Ultrasonic)

  • 박준필;조윤호
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2020
  • Large-scale industrial facility structures continue to deteriorate due to the effects of operating and environmental conditions. The problems of these industrial facilities are potentially causing economic losses, environmental pollution, casualties, and national losses. Accordingly, in order to prevent disaster accidents of large structures in advance, the necessity of diagnosing structures using non-destructive inspection techniques is being highlighted. The defect occurrence, location and defect type of the structure are important parameters for predicting the remaining life of the structure, so continuous defect observation is very important. Recently, many researchers have been actively researching real-time monitoring technology to solve these problems. Structure Health Monitoring Inspection is a technology that can identify and respond to the occurrence of defects in real time, but there is a limit to check the degree of defects and the direction of growth of defects. In order to compensate for the shortcomings of these technologies, the importance of defect imaging techniques is emerging, and in order to find defects in large structures, a method of inspecting a wide range using guided ultrasonic is effective. The work presented here introduces a calculation for the shape factor for evaluation of the damaged area, as well as a variable β parameter technique to correct a damaged shape. Also, we perform research in modeling simulation and an experiment for comparison with a suggested inspection method and verify its validity. The curved structure image obtained by the advanced RAPID algorithm showed a good match between the defect area and the shape.

복합적층 원뿔형 쉘의 파라미터 연구 (Parametric Study of Composite Laminated Conical Shells)

  • 손병직;정대석
    • 한국안전학회지
    • /
    • 제22권5호
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.

L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발 (Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array)

  • 정휘권;이명준;박규해
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.369-376
    • /
    • 2014
  • 항공기 구조물 표면에 발생하는 외부 충격은 크랙과 같은 손상을 발생시킬 수 있으며 이는 차후 큰 결함을 야기하기 때문에 충격과 손상을 탐지하고 위치를 추정하는 것은 구조 안정성 모니터링에 있어 중요한 부분이다. 본 연구에서는 능동, 수동 센싱기법을 조합한 L-형상 압전체 센서 배열을 사용하여 충격과 손상을 탐지할 수 있는 기법을 개발하였다. 수동 센싱기법으로 1개 센서군 당 3개의 센서를 L-형상으로 배치하여 충격 발생 각도를 추정하고 2개의 센서군을 사용하여 충격위치를 탐지하는 방법을 도입하였다. 이 수동 센싱기법을 유도초음파 기반의 능동 센싱기법에 확대 적용하여 동일한 압전소자로 충격 탐지와 더불어 손상을 탐지할 수 있는 방법을 개발하였다. 이 기법은 방향에 따른 파동의 속도 변화와 같은 구조물에 대한 정보 없이도 위치 추정이 가능하여 비등방성 구조 내에서도 정확한 충격 및 손상 위치 정보를 얻을 수 있다. 개발된 기법을 날개 형태 구조물 및 CFRP 판에 적용하여 실험적으로 정확한 충격 및 손상 위치를 추정할 수 있음을 증명하였다.