• Title/Summary/Keyword: plated structures

Search Result 50, Processing Time 0.026 seconds

Interfacial Reaction between 42Sn-58 Bi Solder and Electroless Ni-P/Immersion Au UBM during Aging (시효 처리에 의한 42Sn-58Bi 솔더와 무전해 Ni-P/치환 Au UBM 간의 계면 반응)

  • Cho Moon Gi;Lee Hyuck Mo;Booh Seong Woon;Kim Tae-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.95-103
    • /
    • 2005
  • The interfacial reaction between 42Sn-58Bi solder (in wt.$\%$ unless specified otherwise) and electroless Ni-P/immersion Au has been investigated before and after thermal aging, with a focus on formation and growth of an intermetallic compound (IMC) layer, consumption of under bump metallurgy (UBM), and bump shear strength. The immersion Au layer with thicknesses of 0 (bare Ni), 0.1, and $1{\mu}m$ was plated on the $5{\mu}m$ thick electroless Ni-P ($14{\~}15 at.\%$P) layer. Then, the 42Sn-58Bi solder balls were fabricated on three different UBM structures by screen-printing and pre-reflow. The $Ni_3Sn_4$ layer (IMC1) was formed at the joint interface after pre-reflow for all the three UBM structures. On aging at $125^{\circ}C$, a quaternary phase (IMC2) was observed above the $Ni_3Sn_4$ layer in the Au-containing UBM structures, which was identified as $Sn_{77}Ni{15}Bi_6Au_2$ (in at.$\%$). The thick $Sn_{77}Ni{15}Bi_6Au_2$ layer deteriorated the integrity of the solder joint and the shear strength of the solder bump was decreased by about $40\%$ compared with non-aged joints.

  • PDF

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Exploratory research on ultra-long polymer optical fiber-based corrosion sensing for buried metal pipelines

  • Luo, Dong;Li, Yuanyuan;Yang, Hangzhou;Sun, Hao;Chen, Hongbin
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 2020
  • In order to achieve effective corrosion monitoring of buried metal pipelines, a Novel nondestructive Testing (NDT) methodology using ultra-long (250 mm) Polymer Optical Fiber (POF) sensors coated with the Fe-C alloy film is proposed in this study. The theoretical principle is investigated to clarify the monitoring mechanism of this method, and the detailed fabrication process of this novel POF sensor is presented. To validate the feasibility of this novel POF sensor, exploratory research of the proposed method was performed using simulated corrosion tests. For simplicity, the geometric shape of the buried pipeline was simulated as a round hot-rolled plain steel bar. A thin nickel layer was applied as the inner plated layer, and the Fe-C alloy film was coated using an electroless plating technique to precisely control the thickness of the alloy film. In the end, systematic sensitivity analysis on corrosion severity was further performed with experimental studies on three sensors fabricated with different metal layer thicknesses of 25 ㎛, 30 ㎛ and 35 ㎛. The experimental observation demonstrated that the sensor coated with 25 ㎛ Fe-C alloy film presented the highest effectiveness with the corrosion sensitivity of 0.3364 mV/g at Δm = 9.32 × 10-4 g in Stage I and 0.0121 mV/g in Stage III. The research findings indicate that the detection accuracy of the novel POF sensor proposed in this study is satisfying. Moreover, the simple fabrication of the high-sensitivity sensor makes it cost-effective and suitable for the on-site corrosion monitoring of buried metal pipelines.

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Manufacturing Techniques of a Backje Gilt-Bronze Cap from Bujang-ri Site in Seosan (서산 부장리 백제 금동관모의 제작기법 연구)

  • Chung, Kwang Yong;Lee, Su Hee;Kim, Gyongtaek
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.243-280
    • /
    • 2006
  • At the Bujang-ri Site, Seosan, South Chungcheong Province, around 220 archaeological features, including semi-subterranean houses and pits of Bronze Age and semi-subterranean houses, pits, and burials of Baekje period had been identified and investigated. In Particular, mound burials No. 5 of 13 of Baekje mound burials yielding a gilt-bronze cap along with other valuable artifacts drew international scholarly attention. The gilt-bronze cap from the mound burial No. 5 is a significant archaeological data not only in the study of Baekje archaeology but also in the study of international affairs and exchange at that time. At the time of exposure, the gilt-bronze cap was already broken into a number of pieces and seriously damaged by corrosion, and hardening and urethane foam were necessary in the process of collecting its pieces. Ahead of main conservational treatments on cap, X-ray photograph and CT(computerizes tomography) were taken in order to examine interior structure of the cap and to decide appropriate treatments. In the five layers identified in the profile of cap, a textile layer was set between a metal and a layerof bark of paper birch for avoiding direct contact of the metal and the bark of paper birch. Analyses were executed for examining textile layer and a layer of fibroid material. According to microscopic analysis, while the textile layer consisted of the simplest plain fabric with one fold among three kinds of textile structures, the layer of fibroid material was mixed with two or three kinds of fibers. A comparative analysis with standard sample using FT-IR (Fourier Transform Infrared Spectroscopy) announced that both textiles and fabrics were hemp. Analysis of kind of the paper birch resulted in barks of paper birch with 15 fold. A metallographic microscope, SEM, and WDS were used for the analysis of microscopic structures of plated metal pieces. While amalgam plating was treated as a plating method, the thickness of the plated layer, a barometer of plating technique, was ranged from $1.72{\mu}m$ to $8.67{\mu}m$. The degree of purity of gold (Au) used in plating was 98% in average, and less than 1% of silver (Ag) was included.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Use of Peristeum as a Source of Endothelial-like Cells (혈관내피유사세포 채취의 원천으로 골막의 활용)

  • Park, Bong-Wook;Kim, Shin-Won;Kim, Uk-Kyu;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok-Ryong;Sung, Iel-Young;Cho, Yeong-Cheol;Son, Jang-Ho;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF