• 제목/요약/키워드: plate thickness

검색결과 2,311건 처리시간 0.025초

선급 극후물재의 취성균열 전파 정지 인성에 미치는 용접변수의 영향 (Effect of welding variables on the crack arrest toughness of thick steel plate)

  • 류강묵;안규백;김태수;이태영;이종섭
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.103-103
    • /
    • 2009
  • As the size of containership increased over 14,000TEU, thick steel plate with high strength has been used. The plate thickness increased over 70mm and yield strength of the steel plate was around $47kg_f/mm^2$. Many researchers reported that the thick welded plate has low crack arrest toughness. They noticed the crack arrest ability is dependent on the plate thickness. In other words, brittle crack propagates straightly along the welded line and make abrupt fracture in the thick plate which causes low $K_{ca}$. In this study, the other factors, especially welding heat input, to cause low crack arrest toughness was investigated for thick steel plate welds. EH grade steel plates were used in this study and 50 to 80 thick plates were tested to confirm thickness sensitivity. Electro gas welding (EGW) and flux cored arc welding (FCAW) were adopted to prepare the welded joints. Temperature gradient ESSO test was performed to measure $K_{ca}$ values with the variation of welding variables. As a result of this study, regardless of plate thickness, welding heat input to cause welding residual stress around crack path is a key factor to control the brittle crack propagation in welded joints.

  • PDF

서태평양에 위치한 해저산들의 3-D flexure 모델링 : 무한지판 모델 (Three-dimensional Flexure Modeling by Seamount Loading in the Western Pacific: Infinite Plate Model)

  • 이태국;문재운;지상범;박정기;이기화
    • Ocean and Polar Research
    • /
    • 제27권1호
    • /
    • pp.35-44
    • /
    • 2005
  • The bathymetric and gravity data were obtained in 2001 and 2003 during a survey of seamounts in the northwest of the Marshall Islands, western Pacific. The study areas are located in the Pigafetta Basin which is the oldest part of the Pacific plate and in the Ogasawara Fracture Zone which formed from the spreading ridge between the Izanagi and Pacific plates in the Jurassic. The densities of seamounts and the elastic thickness values of the lithosphere are calculated by using three-dimensional flexure modeling considering the constant sediment layer in the infinite plate model. Very low elastic thickness values (5km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of lithosphere by widespread volcanisms, whereas the elastic thickness values (15km), relatively old seamounts, and young lithosphere of the west study area are suitable for a simple cooling plate model of $300-600^{\circ}C$ isotherm. The gravity residuals of OSM6-1 and OSM6-2 suggest the possibility of different load density or elastic thickness. Relatively older OSM6-2 formed on the younger lithosphere with relatively thin elastic thickness, while younger OSM6-1 on the older lithosphere with relatively thick elastic thickness.

두께변화가 있는 복합재 평판의 램파 전파특성 (The characteristics of Lamb waves in a composite plate with thickness variation)

  • 한정호;김천곤
    • Composites Research
    • /
    • 제18권2호
    • /
    • pp.46-51
    • /
    • 2005
  • 본 논문은 램파(Lamb waves)를 이용한 능동검사시스템을 구조 건전성 모니터링 시스템에 적용하기 위하여 램파의 특성연구를 수행하였다 연구는 보다 실제 구조물에 근접한 구조물을 고려하여 두께변화가 있는 준등방성 복합재 평판을 대상으로 PZT 탐촉자(transducer)를 표면에 부착하여 수행하였다. 본 연구에서는 두께변화로 인한 램파의 전파특성을 분석하기 위하여 간단하지만 새로운 기법을 적용하였다 본 연구의 결과는 램파의 전파특성은 상대적으로 얇은 구조물에 민감하였고 두께변화가 램파의 전파에 미치는 영향을 보여 주었다. 또한 본 연구에 사용한 분석기법은 램파를 이용한 구조 건전성 모니터링에 적용할 수 있는 가능성을 보여주었다.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

긴 관통자에 의한 유한박판 및 적층표적재의 관통현상 연구 (On the Penetration Phenomena for Thin and Multi-Layered Finite Thickness Plates by a Long Rod Penetrator)

  • 이창현;홍성인
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1759-1772
    • /
    • 1994
  • In this study, we re-examined the Tate's modified Bernoulli equation to study penetration phenomena for long rod projectile into single or multi-layered finite thickness plates. We used the force equlibrium equation at mushroomed nose/target interface instead of conventional pressure equation at the stagnation point. In our penetration model, we considered the velocity dependent $R_t$ value for semi-infinite target and considered only the back face effect for finite target. To compensate for $R_t$ value according to target's thickness and back face effect, we used the spherical cavity expansion theory for semi-infinite plate and used the cylindrical cavity expansion theory for finite plate. Also we developed the experimental technique using make screen to measure the penetration duration time at each layered plate. In 3-layered laminated RHA/mild steel/ A1 7039 plate, we observed that spall had occured around the back face of A1 7039 plate by the stress wave interaction. Through the comparison between theoretical and experimental data including Lambert's results, we conform that our study has good confidences.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구 (Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams)

  • 문상필;이성호;이영학;김민숙
    • 한국공간구조학회논문집
    • /
    • 제20권3호
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

원형 제트 충돌 열전달과 유동 특성에 관한 실험적 연구 : 노즐 벽 두께와 노즐 출구 압력의 영향 (An Experimental Study on Heat Transfer and Flow Characteristics of a Circular Impinging Jet on a Flat Plate : Effects of Nozzle Wall Thickness and Nozzle Exit Pressure)

  • 윤상헌;양근영;손동기;최만수
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1285-1295
    • /
    • 1999
  • An experimental study on heat transfer and flow characteristics of a circular impinging jet on a flat plate has been carried out. Of particular interests are the effects of nozzle wall thickness and nozzle exit pressure. Experimental apparatus has been designed to view heating plate coated by TLC from the opposite side of the nozzle in order to measure heat transfer rates for cases of very small nozzle to plate spacings. A visualization study of jet flows has also been performed. As the nozzle wall thickness increases at small nozzle to plate spacings, the effect of mixing is inhibited due to the confinement caused by the finite nozzle wall, consequently, heat transfer rates have been decreased. At small nozzle to plate spacings, heat transfer rates and nozzle exit pressures are increased together, therefore, enhancement of heat transfer at small nozzle to plate spacings should be considered in conjunction with the need of more fan power to generate the same Reynolds numbers.

LPG 강재용기의 응력강도 안전성에 미치는 코너반경의 영향 (Effects of Corner Radius on the Stress Strength Safety of LPG Steel Cylinder)

  • 김청균
    • 한국가스학회지
    • /
    • 제19권1호
    • /
    • pp.18-22
    • /
    • 2015
  • 본 연구는 LPG 강재용기에서 상단반구와 하단반구의 코너반경이 응력강도 안전성에 미치는 영향을 FEM으로 해석한 것이다. FEM 해석결과에 의하면, 응력강도 안전성에 큰 영향을 미치는 요소는 용기의 두께보다 상단반구 및 하단반구의 코너반경이다. 그러나 강재용기의 두께는 경량화에 직결되기 때문에 간과해서는 안 되는 중요한 설계요소이다. LPG 강재용기의 강도안전성 검사에서 최고시험압력이 3.04MPa임을 감안할 때, 20kg용 LPG 강재용기의 두께는 2.3~2.6mm, 상단반구와 하단반구의 코너반경은 157mm 이상으로 최적화 설계하는 것이 바람직함을 알 수 있다.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.