DOI QR코드

DOI QR Code

서태평양에 위치한 해저산들의 3-D flexure 모델링 : 무한지판 모델

Three-dimensional Flexure Modeling by Seamount Loading in the Western Pacific: Infinite Plate Model

  • 이태국 (한국해양연구원 해저환경.자원연구본부) ;
  • 문재운 (한국해양연구원 해저환경.자원연구본부) ;
  • 지상범 (한국해양연구원 해저환경.자원연구본부) ;
  • 박정기 (한국해양연구원 해저환경.자원연구본부) ;
  • 이기화 (서울대학교 자연과학대학 지구환경과학부)
  • Lee, Tae-Gook (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Moon, Jai-Woon (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Chi, Sang-Bum (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Park, Cheong-Kee (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Lee, Kie-Hwa (School of Earth and Environmental Sciences, College of Natural Sciences Seoul National University)
  • 발행 : 2005.03.31

초록

The bathymetric and gravity data were obtained in 2001 and 2003 during a survey of seamounts in the northwest of the Marshall Islands, western Pacific. The study areas are located in the Pigafetta Basin which is the oldest part of the Pacific plate and in the Ogasawara Fracture Zone which formed from the spreading ridge between the Izanagi and Pacific plates in the Jurassic. The densities of seamounts and the elastic thickness values of the lithosphere are calculated by using three-dimensional flexure modeling considering the constant sediment layer in the infinite plate model. Very low elastic thickness values (5km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of lithosphere by widespread volcanisms, whereas the elastic thickness values (15km), relatively old seamounts, and young lithosphere of the west study area are suitable for a simple cooling plate model of $300-600^{\circ}C$ isotherm. The gravity residuals of OSM6-1 and OSM6-2 suggest the possibility of different load density or elastic thickness. Relatively older OSM6-2 formed on the younger lithosphere with relatively thin elastic thickness, while younger OSM6-1 on the older lithosphere with relatively thick elastic thickness.

키워드

참고문헌

  1. 한국해양연구원. 2004. 남서태평양 망간각 탐사 및 개발.
  2. Abrams, L.J., R.L. Larson, T.H. Shiply, and Y. Lancelot. 1992. The seismic stratigraphy and sedimentary history of the East Mariana and Pigafetta basins of the western Pacific. p. 551-569. In: Proc. ODP Sci. Results. ed. by R.L. Larson, Y. Lancelot, A. Fisher, and E.L. Winterer. Texas A&M Univ., College Station.
  3. Bergersen, D.D. 1995. Physiography and architecture of Marshall Islands guyots drilled during Leg 144: Geophysical constraints on platform development. p. 561-583. In: Proc. ODP, Sci. Results. ed. by J.A. Haggerty, I. Premoli Silva, F. Rack, and M. McNutt. Texas A&M Univ., College Station.
  4. Caldwell, J.G. and D.L. Turcotte. 1979. Dependence of the thickness of the elastic oceanic lithosphere on age. J. Geophy. Res., 84, 7572-7576. https://doi.org/10.1029/JB084iB13p07572
  5. Cronan, D.S. and D.S. Fimm. 2000. Handbook of Marine Mineral Deposits, CRC Press, N.Y.
  6. Hamilton, E.L. 1953. Upper Cretaceous, Tertiary, and Recent planktonic foraminifera from mid-Pacific flat-topped seamounts. J. Paleontol., 27, 204-237.
  7. Hamilton, E.L. 1956. Sunken Islands of the Mid-Pacific Mountains. Geol. Soc. Am. Mem., 64, 97.
  8. Harris, R.N. and D.S. Chapman. 1994. A comparison of mechanical thickness estimates from trough and seamount loading in the southeastern Gulf of Alaska. J. Geophy. Res., 99, 9297-9317. https://doi.org/10.1029/93JB03285
  9. Henderson, L.J. and R.G. Gordon. 1981. Oceanic plateaus and the motion of the Pacific plate with respect to the hotspots (abstract). EOS. Trans. Am. Geophys. Union, 62, 1028.
  10. Koppers, A.A.P., H. Staudigel, J.R Wijbrans, and M.S. Pringle. 1998. The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth Planet. Sci. Lett., 163, 53-68. https://doi.org/10.1016/S0012-821X(98)00175-7
  11. Larson, R.L. 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19, 547-550. https://doi.org/10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
  12. Larson, R.L. and Y. Lancelot et al. 1992. Proc. ODP, Sci. Results, 144. Texas A&M Univ., College Station.
  13. Lee, T.G., S.M. Lee, J.W. Moon, and K. Lee. 2003. Paleomagnetic investigation of seamounts in the vicinity of Ogasawara Fracture Zone northwest of the Marshall Islands, western Pacific. Earth Planets Space, 55, 355 https://doi.org/10.1186/BF03351769
  14. Lincoln, J.M., M.S. Pringle, and I.P. Silva. 1993. Early and Late Cretaceous Volcanism and Reef-Building in the Marshall Islands. p. 279-305. In: The Mesozoic Pacific: Geology, Tectonics, and Volcanism. ed. by M.S. Pringle, W.W. Sager, W.V. Sliter, and S. Stein. AGU, Washington DC.
  15. Matthews, J.L., B.C. Heezen, R. Catalano, A Coogan, M. Tharp, J. Natland, and M. Rawson. 1974. Cretaceous drowning of reefs on mid-Pacific and Japanese Guyots. Science, 184, 462-464. https://doi.org/10.1126/science.184.4135.462
  16. Menard, H.W. 1984. Darwin reprise. J. Geophy. Res., 89, 9960-9968. https://doi.org/10.1029/JB089iB12p09960
  17. Nakanishi, M., K. Tamaki, and K. Kobayashi. 1989. Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific. J. Geophys. Res., 94, 15437-15462. https://doi.org/10.1029/JB094iB11p15437
  18. Nakanishi, M., K. Tamaki, and K. Kobayashi. 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophys. J. Int. 109, 701-719. https://doi.org/10.1111/j.1365-246X.1992.tb00126.x
  19. Parsons, B. and J.G. Sclater. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803-827. https://doi.org/10.1029/JB082i005p00803
  20. Pringle, M.S. 1992. Radiometric ages of basaltic basement recovered at Sites 800, 801, and 802, Leg 129, western Pacific Ocean. p. 389-404. In: Proc. ODP Sci. Res. ed. by R.L. Larson and Y. Lancelot et al. Texas A&M Univ., College Station.
  21. Ramillien, G. and I.C. Wright. 2002. Seamount gravity anomaly modelling with variable thick sediment cover. Mar. Geophy. Res., 23, 13-23. https://doi.org/10.1023/A:1021231221660
  22. Rea, D.K. and T.L. Vallier. 1983. Two Cretaceous volcanic episodes in the western Pacific Ocean. Geol. Soc. Am. Bull., 94, 1430-1437. https://doi.org/10.1130/0016-7606(1983)94<1430:TCVEIT>2.0.CO;2
  23. Sager, W.W. and M.S. Pringle. 1988. Mid-Cretaceous to early Tertiary Apparent Polar Wander Path of the Pacific plate. J. Geophys. Res., 93, 11753-11771. https://doi.org/10.1029/JB093iB10p11753
  24. Schlanger, S.O., H.C. Jenkyns, and I. Premoli-Silva. 1981. Volcanism and vertical tectonics in the Pacific basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett., 52, 435-449. https://doi.org/10.1016/0012-821X(81)90196-5
  25. Smith, W.H.F. 1990. Geophysics of Ratak Guyot (Marshall Islands): implications for the history of the South Pacific isotpoic and thermal anomaly. EOS, 71, 1667.
  26. Smith, W.H.F., H. Staudigel, A.B. Watts, and M.S. Pringle. 1989. The Magellan Seamounts: Eartly Cretaceous record of the south Pacific isotopic and thermal anomaly. J. Geophys. Res., 94, 10501-10523. https://doi.org/10.1029/JB094iB08p10501
  27. Smoot, N.C. 1983. Guyots of the Dutton ridge at the Bonon/Mariana trench juncture as shown by multi-beam surveys. J. Geol., 91, 211-220. https://doi.org/10.1086/628757
  28. Smoot, N.C. 1989. The Marcus-Wake seamounts and guyots as paleo-fracture indicators and their relation to the Dutton Ridge. Mar. Geol., 88, 117-131. https://doi.org/10.1016/0025-3227(89)90008-X
  29. Stewart, J. and A.B. Watts. 1997. Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophy. Res., 102, 5327-5352. https://doi.org/10.1029/96JB03664
  30. Timoshenko, S.P. and Woinowsky-Krieger. 1959. Theory of Plates and Shells. McGraw-Hill, N.Y.
  31. Watts, A.B., J.H. Bodine, and N.M. Ribe. 1980. Observations of flexure and the geological evolution of the Pacific Ocean basin. Nature, 283, 532-537. https://doi.org/10.1038/283532a0
  32. Wedgeworth, B. and J. Kellogg. 1987. A 3-D gravity-tectonic study of Ita Mai Tai guyot: An uncompensated seamount in the East Mariana Basin. p. 73-84. In: Seamounts, Islands, and Atolls. ed. by B.H. Keating, P. Freyer, R. Batiza, and G.W. Boehlert. AGU, Washington DC.
  33. Wessel, P. and L.W. Kroenke. 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature, 387, 365-369. https://doi.org/10.1038/387365a0
  34. Winterer, E.L. 1976a. Bathymetry and regional tectonic setting of the Line Islands Chain, Init. Repts. DSDP, 33, 731-748.
  35. Winterer, E.L. 1976b. Anomalies in the tectonic evolution of the Pacific. p. 731-748. In: The geophysics of the Pacific Ocean basin and its margins. ed. by G.H. Sutton, M.H. Manhnani, and R. Moberly. AGU, Washington DC.
  36. Wolfe, C.J. and M.K. McNutt. 1991. Compensation of cretaceous seamounts of the Darwin Rise, Northwest Pacific Ocean. J. Geophy. Res., 96, 2363-2374. https://doi.org/10.1029/90JB01893