• Title/Summary/Keyword: plate bonding

Search Result 230, Processing Time 0.036 seconds

Analysis of Effects on Concrete Beam Strengthened with CFRP Plate according to Temperature Change (CFRP로 보강된 콘크리트 보의 온도 변화에 따른 영향 분석)

  • 조홍동;한상훈;이승수;신진환
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this study, the behavior characteristics of specimen strengthened with CFRP plate were analyzed according to the change of temperature. CFRP plate itself has a good resistance at the high temperature, but epoxy used as a adhesive is lost its bonding strength at the relatively low temperature. Therefore, this study carries out experiment on the beams slot-bonded with CFRP plates in order to maintain the successful bonding strength of epoxy at high temperature. It is presented that the range of glass transition temperature is 60-8$0^{\circ}C$ and RC beams slot-bonded with CFRP plate shows more increasing resistance and failure load than that of interface bonded at the high temperature.

The Evaluation of Stability for Hook-type Bonding Method of Pile Foundation and Cap (훅타입 말뚝두부보강 기초의 안정성 평가)

  • Lee, Heunggil;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • The typical bonding methods which connect steel pipe pile and spread footing is bolted bonding method using +type cover plate for reinforcing a head of steel pipe pile. In this paper, stability of spread footing in pile foundation have been evaluated by loading test of +type cover plate for reinforcing a head of pile and hook type bonding method. The presents results from a series of pilot model test on vertically loaded piles foundation of bolted bonding method and hook type bonding method, pile foundation is identified to safety due to pile foundation exceed 8.5~21% which more than yield stress of steel pipe pile. As the results of horizontal loading tests, peak load of piles foundation of hook type bonding method has estimated in 41.1tonf and it was exceed about 33% which more than pile foundation of bolted bonding method.

  • PDF

A Study to Improve Bonding Strength with Notch in Strengthening Plate (노치를 이용한 보강재의 부착력 증가 방안에 관한 연구)

  • 한만엽;송병표
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.647-652
    • /
    • 1998
  • Recently, many strengthening methods are developed and used to rehabilitate existing structure. One of the popualr methods is the strengthening with steel plate. But steel plate have a defect that is a debondig at the end of the steel plate due to stress concentration. The objective of this paper is an experimental study for improving bonding properties of a strengthening plate. The two normally reinforced beams and ten strengthened beams steel plate, which has various notches were tested. The test results show that the notches of strengthening plate improve post-yield behavior significantly compared. It is proved that the notch in a strengthening plate increase of ulimate strength after the yield strength 9% more than ordinary strengthening method.

  • PDF

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

Development of Wedge-Type Mechanical Anchor for FRP Plate (FRP 판용 쐐기형 정착구의 개발)

  • Cho Jeong Rae;Park Young Hwan;Park Jong Sup;Yoo Young Jun;Jung Woo Tae;Kim Chul Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.80-83
    • /
    • 2004
  • The FRP plate or sheet bonding technology was widely used for strengthening deficient RC structures. The strengthened structure using FRP bonding scheme, however, experience the complex interfacial behaviour which is difficult to predict. Therefore, the unbonded scheme using some anchorage device can be is an alternative for more reliable design. In this study, wedge-type anchor for FRP plate is developed for the unbonded flexural strengthening scheme. Some parameter study using 2D finite element method is performed. The analysis parameters are taken as wedge-guide friction coefficients, wedge- FRP ,.friction coefficient and wedge inclination angle. Based on the parameter study, more efficient anchors are designed and tested. The test result show that the developed anchor assure about $80\%$ FRP strength, which is higher performance than typical bonding scheme. Last, 3D finite element analysis is performed.

  • PDF

Effect of Bonding Layer on Guided Wave Mode Behavior in FRP Plate Bonded on Concrete (FRP 보강판 부착 콘크리트에서 유도초음파 모드 거동에 대한 접착층의 영향)

  • Lee, Yong-Ju;Shin, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this study, effects of bonding agent, e.g. epoxy, on the behavior of fundamental guided wave modes propagated in FRP plate bonded on a concrete, are investigated. Global matrix model of multilayered FRP-epoxy-concrete system was constructed to obtain the velocity and attenuation dispersion curves of the fundamental A0 and S0 modes. Two variables, thickness and elastic modulus of epoxy layer, were considered in the dispersion analysis. It was found that both the thickness and the elastic modulus of epoxy layer greatly affect the phase velocity and attenuation of S0 mode while those are negligible for A0 mode. Based on the results, it was concluded that S0 mode is more effective than A0 mode for bonding condition assessment for FRP plate bonded concrete.

Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load (원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

Development of The 3-channel Vision Aligner for Wafer Bonding Process (웨이퍼 본딩 공정을 위한 3채널 비전 얼라이너 개발)

  • Kim, JongWon;Ko, JinSeok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • This paper presents a development of vision aligner with three channels for the wafer and plate bonding machine in manufacturing of LED. The developed vision aligner consists of three cameras and performs wafer alignment of rotation and translation, flipped wafer detection, and UV Tape detection on the target wafer and plate. Normally the process step of wafer bonding is not defined by standards in semiconductor's manufacturing which steps are used depends on the wafer types so, a lot of processing steps has many unexpected problems by the workers and environment of manufacturing such as the above mentioned. For the mass production, the machine operation related to production time and worker's safety so the operation process should be operated at one time with considering of unexpected problem. The developed system solved the 4 kinds of unexpected problems and it will apply on the massproduction environment.

  • PDF