• Title/Summary/Keyword: plastomer

Search Result 4, Processing Time 0.02 seconds

Stabilization Mechanisms in Polyolefine-Asphalt Emulsions 1. Temperature Susceptibility of Chlorinated Polyethylene-Modified Asphalts (폴리올레핀-아스팔트 에멀젼의 안정화 메카니즘 1. Chlorinated Polyethylene으로 개질된 아스팔트의 온도 의존성)

  • Lee, Jin-Kook;Hesp, Simon A.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.537-546
    • /
    • 1994
  • The physical characteristics of polymer modified asphalt depend on many parameters, such as, the polymer nature, polymer content and the asphalt properties. The objective of this study is to investigate the temperature susceptibility of polymer modified asphalt. The asphalts employed in this study were two different grades : a soft(200/300) grade and a hard(85/100) grade. And chlorinated polyethylene of two different characteristics were used : plastomer(Tyrin 2552) and elastomer(Tyrin CM0730). Temperature susceptibility of asphalt is a fundamental feature for characterizing asphalt and modified asphalt. It can be quantified by the penetration index(PI) and pen-vis number(PVN). These indices were obtained from the measurements of penetration and viscosity of the asphalt samples. For both of asphalts, the addition of the polymers increases the value of PI and PVN. Plastomer modified asphalt shows higher value of PI and PVN than elastomer modified asphalt. Soft grade shows more temperature susceptibility than hard grade at elevated temperatures.

  • PDF

Synthesis of Terpolymers and Dependence of Their Characteristics on Types and Content of High α-olefin

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Novel flexible terpolymers with a reactive moiety were synthesized by coordination polymerization with a metallocene catalyst and a cocatalyst system. C2-symmetric rac-Et(Ind)2ZrCl2 and tri-iso-butylaluminum/dimethylanilinium tetrakis (pentafluorophenyl) borate were employed as the catalyst and cocatalyst, respectively. We synthesized reactive terpolymers consisting of ethylene, a high α-olefin content (1-hexene, 1-octene, 1-decene, and 1-dodecene), and divinylbenzene. The structure and composition of the terpolymers were characterized by 1H-nuclear magnetic resonance analysis. The catalytic activity, polymer yield, molecular weight, and molecular weight distribution were measured as functions of the chain length and high content of α-olefins. Furthermore, the thermal properties and crystallinity of the terpolymers were determined by differential scanning calorimetry and wide-angle X-ray scattering.

Rheological Characteristics of Highly Concentrated Polymer Bonded Explosive Simulant: Wall Slip, Thixotropy, and Flow Instability (고농축 복합화약 시뮬란트의 유변학적 특성: 벽면 미끄러짐, 틱소트로피, 유동불안정성)

  • Lee, Sangmook;Hong, In-Kwon;Ahn, Youngjoon;Lee, Jae Wook
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.213-219
    • /
    • 2014
  • The rheological characteristics of highly concentrated polymer bonded explosive simulant were studied. Hydroxyl terminated polybutadiene (HTPB) and polyethylene plastomer (Exact) were used as binders. Sugar and Dechlorane particles whose physical properties are similar to research department explosive (RDX) were used as fillers. When HTPB was used, diethyl hexyl adipate (DEHA or DOA) was used as a plasticizer together for some cases. Highly concentrated suspensions were mixed in a batch melt mixer (Rheomixer 600, Haake) and rheological properties were measured by plate-plate and capillary rheometers. Wall slip phenomena, thixotropy with shear hysteresis, and flow instability were investigated as shear rate and amount of fillers changed.

Highly Concentrated Polymer Bonded Explosive Simulant: Rheology of Exact/Dechlorane Suspension (고농축 복합화약 시뮬란트: Exact/Dechlorane 현탁계의 유변물성)

  • Lee, Sangmook;Hong, In-Kwon;Lee, Jae Wook;Lee, Keun Deuk
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.286-292
    • /
    • 2014
  • The rheology of highly concentrated polymer bonded explosive (PBX) simulant was studied. An energy material, polyethylene plastomer (Exact$^{TM}$) having similar properties to poly(BAMO-AMMO) was selected as a binder. Dechlorane with similar properties to RDX (Research Department eXplosive) was chosen as a filler. Mixing behavior in a batch melt mixer was investigated. During mixing a large amount of heat of viscous dissipation was generated and a continuous decrease in torque was observed when the filler content was above 70 v%. It was believed due to wall slip phenomena. From the SEM images, the fillers were well dispersed and the effect of mixing condition affected slightly on the dispersion. Owing to distinct shear thinning behavior of the suspensions, measuring viscosity of highly filled suspensions was possible in a high shear rate capillary rheometer though it was impossible even in a low shear rate plateplate rheometer.