Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.213

Rheological Characteristics of Highly Concentrated Polymer Bonded Explosive Simulant: Wall Slip, Thixotropy, and Flow Instability  

Lee, Sangmook (Division of Chemical Engineering, Dankook University)
Hong, In-Kwon (Division of Chemical Engineering, Dankook University)
Ahn, Youngjoon (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 213-219 More about this Journal
Abstract
The rheological characteristics of highly concentrated polymer bonded explosive simulant were studied. Hydroxyl terminated polybutadiene (HTPB) and polyethylene plastomer (Exact) were used as binders. Sugar and Dechlorane particles whose physical properties are similar to research department explosive (RDX) were used as fillers. When HTPB was used, diethyl hexyl adipate (DEHA or DOA) was used as a plasticizer together for some cases. Highly concentrated suspensions were mixed in a batch melt mixer (Rheomixer 600, Haake) and rheological properties were measured by plate-plate and capillary rheometers. Wall slip phenomena, thixotropy with shear hysteresis, and flow instability were investigated as shear rate and amount of fillers changed.
Keywords
polymer bonded explosive; simulant; wall slip; thixotropy; flow instability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. J. Hinch and L.G. Leal, J. Fluid Mech., 52, 683 (1972).   DOI
2 M. R. Kamal and A. Mutel, J. Polym. Eng., 5, 293 (1985).   DOI
3 S. A. Khan and R. K. Prud'homme, Rev. Chem. Eng., 3, 205 (1987).
4 R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
5 I. M. Krieger, Adv. Colloid Interface Sci., 3, 111 (1972).   DOI   ScienceOn
6 R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
7 G. N. Choi and I. M. Krieger, J. Colloid Interface Sci., 113, 101 (1986).   DOI
8 U. Yilmazer, C. Gogos, and D. Kalyon, Polym. Compos., 10, 242 (1989).   DOI   ScienceOn
9 A. V. Ramamurthy, J. Rheol., 30, 337 (1986).   DOI   ScienceOn
10 O. Bartos and J. Holomek, Polym. Eng. Sci., 11, 324 (1971).   DOI
11 G. V. Vinogradov, G. B. Froishteter, K. K. Trilisskii, and E. L. Smorodinskii, Rheol. Acta, 14, 765 (1975).   DOI
12 A. M. Kraynik and W. R. Schowalter, J. Rheol., 25, 95 (1981).   DOI   ScienceOn
13 G. Segre and A. Silberberg, Nature, 189, 209 (1961).   DOI
14 G. Segre and A. Silberberg, J. Fluid Mech., 14, 115 (1962).   DOI
15 V. Seshadri and S. P. Sutera, Trans. Soc. Rheol., 14, 351 (1970).   DOI
16 C. D. Han, Multiphase Flow in Polymer Processing, Academic Press, New York, 1981.
17 M. Mooney, J. Rheol., 2, 210 (1931).   DOI
18 T. Q. Jiang, A. C. Young, and A. B. Metzner, Rheol. Acta, 25, 397 (1986).   DOI
19 U. Yilmazer, SPE ANTEC Technical Papers, 34, 1608 (1988).
20 A. Yoshimura and R. K. Prud'homme, J. Rheol., 32, 53 (1988).   DOI
21 B. Rabinowitsch, J. Physik. Chem., A145, 1 (1929).
22 F. Soltani and U. Yilmazer, SPE ANTEC Technical Papers, 1, 1232 (1999).
23 J. Nanda, A. Biswas, and A. Banerjee, Soft Matter, 9, 4198 (2013).   DOI   ScienceOn
24 Z. Zhu, Rheol. Acta, 43, 373 (2004).
25 A. B. Metzner, J. Rheol., 29, 739 (1985).   DOI   ScienceOn
26 L. E. Nielsen, Polymer Rheology, Marcel Dekker, New York, 1977.
27 Y. Cohen and A. B. Metzner, J. Rheol., 29, 67 (1985).   DOI   ScienceOn
28 H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989.