• Title/Summary/Keyword: plasticity equation

Search Result 237, Processing Time 0.019 seconds

Relationship between Hardness and Relative Ddensity in Sintered Metal Powder Compacts (금속분발소결체의 경도와 상대밀도 관계)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.168-174
    • /
    • 1998
  • In the present study, a method for measuring the relative density by the hardness measurement was proposed for sintered metal powder compacts. It is based on the indentation force equation, by which the relative density is related with the hardness, that was obtained by the finite element analysis of rigid-ball indentation on sintered metal powder compacts. For verifying the method, it was applied to prediction of density distributions in sintered and sintered-and-forged Fe-0.5%C-2%Cu powder compacts.

  • PDF

A Study on the Pladstic Instable Flow in Free Forging (자유 단조의 소성불안정 유동에 관한 연구)

  • 이용성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.96-100
    • /
    • 2000
  • It is difficult to predict material behavior of forming process because the plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. In view of the direct relationship between instable material flow and quality defects of the products we should find out their phenomena, In this study we introduced the plastic spin and the kinematic hardening considering the kinematic hardening constitutive equation for rate-dependent material. Also analysis of upset forging is carried out using the rigid plastic FEM with Al7075

  • PDF

An Experimental Study on the Relation between Flow Stress and Vickers Hardness (유동응력과 비커스경도의 관계 실험적 연구)

  • 이충호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.65-68
    • /
    • 1997
  • Vickers hardness is defined as indenting force per unit area indented by a pyramid-shaped diamond at the hardness test. It is well known that Vickers hardness has a direct relation with the flow stress of the strain-hardened material. This relation was theoretically investigated and the result was summerized in a form of algebraic equation in the last paper. In the present paper and experimental validation of this theoretical relation is given along with mathematical formulas for conversion of Vickers hardness into the flow stress in the strain-hardened material for practical use.

  • PDF

Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method (변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링)

  • Choi, Yoon Suk;Cho, Kyung-Mox;Nam, Dae-Geun;Choi, Il-Dong
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

Determination Method of Ramberg-Osgood Constants for Leak Before Break Evaluation (파단전 누설 평가를 위한 Ramberg - Osgood 상수 결정법)

  • Bae, Kyung Dong;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.645-652
    • /
    • 2015
  • In this study, a method for determining Ramberg-Osgood constants for leak-before-break evaluation was investigated. The Ramberg-Osgood constants were calculated for SA312, TP316, and SA-508 Gr.1a in an operating temperature of $316^{\circ}C$. Incremental plasticity, using stress-strain data obtained from experiment, and deformation plasticity, using the Ramberg-Osgood constants, were considered in a finite element analysis. Using incremental plasticity and deformation plasticity, J-integrals and crack opening displacement values were calculated and compared. By comparing the results of incremental plasticity and deformation plasticity, a suitable method for determining Ramberg-Osgood constants for leak-before-break evaluation was confirmed.

Finite Element Analysis with Viscoplastic Formulation in Open-Die RTP Process (개방형 RTP(Rapid Thermal Pressing)공정의 점소성 유한요소해석)

  • Son J. W.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.284-289
    • /
    • 2004
  • Since polymer materials at elevated temperatures are usually rate-sensitive, the analysis of RTP process requires considering the effect of the rate-dependent. The material behavior that exhibits rate-sensitivity is called visco-plastic. A two-dimensional visco-plastic finite element formulation which constitutive equation is based on the formulation proposed by Perzyna is presented. This Paper is purposed to calcuate pressure distribution on PMMA in compression process and to predict the relationship with defects after demolding process. This paper analyzes, both analytically and numerically, the pressure distributions on the surface of PMMA during open-die RTP process. In this research, PMMA is used to be simulated at $110^{\circ}C$ near the transition temperature.

  • PDF

Incompatible 3-node interpolation for gradient-dependent plasticity

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.87-97
    • /
    • 2004
  • In gradient-dependent plasticity theory, the yield strength depends on the Laplacian of an equivalent plastic strain measure (hardening parameter), and the consistency condition results in a differential equation with respect to the plastic multiplier. The plastic multiplier is then discretized in addition to the usual discretization of the displacements, and the consistency condition is solved simultaneously with the equilibrium equations. The disadvantage is that the plastic multiplier requires a Hermitian interpolation that has four degrees of freedom at each node. Instead of using a Hermitian interpolation, in this article, a 3-node incompatible (trigonometric) interpolation is proposed for the plastic multiplier. This incompatible interpolation uses only the function values of each node, but it is continuous across element boundaries and its second-order derivatives exist within the elements. It greatly reduces the degrees of freedom for a problem, and is shown through a numerical example on localization to yield good results.

The Size Effect in Particulate Composite Materials - Size - Dependent Plasticity (입자보강 복합재료에서 크기효과 -Size-Dependent 소성역학)

  • Kim S. H.;Huh H.;Hahn H. Thomas
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.167-170
    • /
    • 2005
  • This paper briefly reviews various existing methods to account for the effect of particle size on mechanical properties of particulate metal matrix composites. A simple and easy method is to use a size-dependent constitutive equation for the matrix. The suggested method does not require the development of a new computational algorithm and is compatible with any standard finite element software. Finite element analyses have been carried out to show how the deformation behavior of a metal matrix composite changes as the particle size and volume fraction are varied.

  • PDF

A Study on the Novel Prediction of Mold Wall Thickness for a Deep Depth Injection Mold (깊이가 깊은 사출 금형의 새로운 측벽 두께 설계에 관한 연구)

  • Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.528-533
    • /
    • 2008
  • Cavity in the mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Subsequently mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress concentration and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was modified from beam theory considering cantilever and two points bending situation while previous equation was modified from just cantilever bending situation. The validity of novel equation was verified through computer simulations for various mold side and wall thickness.

Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill (신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발)

  • 김필호;문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF