• Title/Summary/Keyword: plastic wastes

Search Result 104, Processing Time 0.033 seconds

A Study on the Strength. Chemical Resistance and Absorption of Polymer concrete with Recycling PET (재활용 PET수지를 이용한 폴리머 콘크리트의 강도, 내화학성, 흡수율에 관한 실험적 연구)

  • 조병완;서석구;태기호;박승국;류성희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.805-810
    • /
    • 2003
  • It is the real circumstance in the country that not only the data and special books but also people who have an expert knowledge are short of the field of the study about plastic wastes, so that to build the Database carrying out gathering info of that is the present question obviously. The business on recycling plastic, for some reason or other, is one of the best ways as called bright prospect industry to prevent environmental pollution and obtain economical outcome by using limited resources. Plastic wastes with construction industry especially using Polymer may have a good effect on the environment and human beings and have a fine view to produce functional and Eco-friendly concrete as well. In this study, Chemical resistance and Water Absorption test in Polymer concrete using bentonite as a shrinkage control agent was made an experiment by comparing with influence on concrete strength and used to offer some valuable data about Polymer concrete.

  • PDF

Application of various types of recycled waste materials in concrete constructions

  • Hosseini, Seyed Azim
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.479-489
    • /
    • 2020
  • Studies have proved that the mechanical properties of concrete, suddenly is dropped off with employing waste materials as replacements. The effectiveness of fibre addition on the structural stability of concrete has been indicated in recent investigations. There are different waste aggregates and fibres as plastic, rubber tire, coconut, and other natural wastes, which have been evaluated throughout the last decades. The fibres incorporation has a substantial effect on the properties of concrete mix subjected to different loading scenarios. This paper has reviewed different types of wastes and the effect of typical fibres including Poly Ethylene Terephthalate (PET), rubber tire, and waste glass. Furthermore, waste plastic and waste rubber has been especially studied in this review. Although concretes containing PET fibre revealed a reduction in compressive strength at low fibre fractions, using PET is resulted to micro-cracking decrement and increasing flexibility and flexural strength. Finally, according to the reviews, the conventional waste fibres are well-suited to mitigated time-induced damages of concrete and waste fibres and aggregates could be a reliable replacement for concrete.

Environmental Degradation Index for the Reduction of Packing Wastes (포장 폐기물 감량을 위한 환경저해지수 제안)

  • Hong, Ho-jin;Cho, Hyun-min;Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.26-33
    • /
    • 2020
  • The plastic waste problem is deepening all over the world. Plastic wastes have serious impacts on our lives as well as environ- mental pollution. The production and use of plastics increases every year, but once they are produced, they usually roam the earth for hundreds or thousands of years to pollute the environment. Although there is growing interest in plastic issues around the world and environmental regulations are being tightened, but no clear solution has yet been found. This study suggests Environmental degradation index (EDI). EDI can help raise consumers' attention to plastic wastes. In addition, EDI will contribute to reduce them in the future. As far as we know, this is the first study. We developed EDI for the confectionery packaging. This study defines four factors that may affect the environment of confectionery packaging: greenhouse gas emissions, energy consumption, methane emissions, and packaging space ratio. Then we quantify the value of each element and compute EDI as the sum of the four component values. In order to evaluate the feasibility of EDI proposed in this study, confectionery-packaging materials distributed in Korea were collected and analyzed. First, the types of confectionery are classified into pies, biscuits, and snacks and basic data was collected. Then the values of the four components were calculated using existing research data on the environment. We can use the proposed EDI to determine how much a product packing affects the environment.

Development of Tribo-electrostatic Separation Technique for Scale-up Process of Heavy Group Plastic Tailings (고비중(高比重) 종말품(終末品) 폐(廢)플라스틱 대량처리(大量處理)를 위한 마찰하전(摩擦荷電) 정전선별(靜電選別) 기술개발(技術開發))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Bong-Gon
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.30-38
    • /
    • 2009
  • In this research, we studied the scale-up triboelectrostatic process for separation of PVC from higher gravity fraction of plastic wastes produced from wet gravity separation process. High density polyethylene (HDPE) was found to be the most effective materials for a tribo-charger in the separation of plastic tailings. In a commercial scale triboelelctrostatic separator unit, using the HDPE pipe-line charger, a grade of 99.1% with PET, PS and others and a recovery of 86% was obtained under optimum conditions at over 250 kV/m electric field, a splitter position of -8 cm from the center, and less than 40% relative humidity. The developed unit can process the plastic wastes at a 300 kg/h, and the product can be utilized as RPF or RDF of over grade 2.

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

Development of Deep Learning based waste Detection vision system (Deep Learning 기반의 폐기물 선별 Vision 시스템 개발)

  • Bong-Seok Han;Hyeok-Won Kwon;Bong-Cheol Shin
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.60-66
    • /
    • 2022
  • Recently, with the development of industry and the improvement of living standards, various wastes are generated along with the production of various products. Most of these wastes are used as containers for products, and plastic or aluminum is used. Various attempts are being made to automate the classification of these wastes due to the high labor cost, but most of them are solved by manpower due to the geometrical shape change due to the nature of the waste. In this study, in order to automate the waste sorting task, Deep Learning technology is applied to a robot system for waste sorting and a vision system for waste sorting to effectively perform sorting tasks according to the shape of waste. As a result of the experiment, a Deep Learning parameter suitable for waste sorting was selected. In addition, through various experiments, it was confirmed that 99% of wastes could be selected in individual & group image learning. It is expected that this will enable automation of the waste sorting operation.

Study of Light Weight Concrete Using Aggregate of Waste Plastic Materials (폐플라스틱 제품의 골재를 이용한 경량 콘크리트에 관한 연구)

  • 한상묵;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • In scrapped material field, about ten millions ton of waste plastic materials are produced in korea. However recycling rate of waste plastic materials have above 25%. Therefore, it is urgently needed that they are used as recycled materials in order to prevent environment pollution and grain economic profits. In this paper, physical and mechanical properties of light weight concrete using waste plastic materials for aggregates are described in order to develop a light weight concrete with the aggregate made from waste plastic goods, it was carried out many experiments on mix proportion and strength. According to the experimental results, high-strength mortar was necessary to make light weight concrete using aggregate of waste plastic materials. Especially, considering the side of recycling of plastic wastes, it is recommended that recycled aggregates made from waste plastic materials is applied to light weight concrete.

  • PDF

Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass (플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성)

  • Choi, Sun-Yong;Lee, Moon-Won;Hwang, Hoon;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • In this study, we consider gas generation characteristics on pyrolysis of eco-fuel which were made by mixing of Pitch Pine and Lauan sawdust as biomass and polyethylene, polypropylene, polystyrene as municipal plastic wastes with catalyst in fixed bed reactor. From the result of higher heating value(HHV) measurement and of ultimate analysis, the heating value of plastic wastes and a hydrogen content in plastic sample are higher than biomass. An activation energy was reduced by a catalyst addition. However the catalyst content influence over 5 wt% was insignificant. The yield of hydrogen from gasification of biomass containing plastic wastes such as polyethylene, polypropylene and polystyrene were obtained higher than that of sole biomass. The high temperature and mixture ratio of catalyst conditions induced to high hydrogen yield in most of the samples. As the influence of catalyst, the hydrogen yield by catalytic reaction was higher than non-catalytic reaction. We confirmed that Ni-$ZrO_2$ catalyst is more active in increasing the hydrogen yield in comparison with that of carbonate catalyst. The maximum hydrogen yield was 65.9 vol.%(Pitch Pine / polypropylene / 20 wt.% Ni-$ZrO_2$(1:9) at $900^{\circ}C$).