• 제목/요약/키워드: plastic recycling

검색결과 340건 처리시간 0.022초

Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials

  • Song, Hyun-Seob;Hyun, Jae Chun
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.99-107
    • /
    • 2001
  • Optimization methodologies have been proposed of find the best environment-friendly recycling pathways of plastic materials based on life-cycle assessment (LCA) methodology. The main difficulty in conducting this optimization study is that multiple environmental burdens have to be considered simultaneously as the cost functions. Instead of generating conservative Pareto or noninferior solutions following multi-objective optimization approaches, we have proposed some practical criteria on how to combine the different environmental burdens into a single measure. The obtained single objective optimization problem can then be solved by conventional nonlinear programming techniques or, more effectively, by a tree search method based on decision flows. The latter method reduces multi-dimensional optimization problems to a set of one-dimensional problems in series. It is expected the suggested tree search approach can be applied to many LCA studies as a new promising optimization tool.

  • PDF

폐플라스틱의 재활용에 관한 연구 (Studies on Recycling Technology Wasted Plastic)

  • 이수근
    • 한국포장학회지
    • /
    • 제11권1호
    • /
    • pp.47-52
    • /
    • 2005
  • The wasted plastic PC/ABS retainer, polyurethane foam (PUF) and vinyl (PVC) skin. In order to investigate the recycling process, the multi-layered instrument panel Each of materials separated was shredded and crushed to create many small particles respectively. The separation of the foam and skin and retainer of zigzagged air blower. Pilot tests performed at the equipment yielded 98.8% by weight of the available PVC and 99.3% by weight of the available PC/ABS respectively. Secondly, the thermal stabilizer and the compatabilizer have been used to improve the physical propertied of recycled materials.. The properties of recycled PVC materials resulted in about 50% compared to that of virgin materials after treatment by Pb-St thermal stabilizer. In addition, the properties of recycled PC/ABS materials was also obtained about 80% compared to that of virgn materials after treatment by PMMA compatabilizer.

  • PDF

일본의 폐플라스틱 처리현황 (Current Status of the Treatment of Used Plastics in Japan)

  • Masahiro, Murakami
    • 자원리싸이클링
    • /
    • 제6권2호
    • /
    • pp.5-11
    • /
    • 1997
  • 일본 전국의 도시쓰레기 배출량은 약 5,020만톤/년(1992년)으로 약 77%가 소각처리되고 최종잔사는 매립처분되고 있으나 최종 처분장의 사용연수가 약 7년으로 도시쓰레기 처분량의 감량이 시급히 요구되고 있다. 이러한 도시쓰레기 중 가연성인 종이, 플라스틱 등이 약 30%를 차지하고 있으며 이들은 연료로 이용될 수 있는 특성을 갖고 있다. 한편 일본의 폐플라스틱 발생량은 1,300만톤/년(1994년)으로이들의 약 23%가 재이용되고 있다. 도시쓰레기의 감량 및 재자원화를 위하여 1995년 6월에 "용기포장 리싸이클법"이 제정되었으며 관련업체별로 폐플라스틱을 회수하여 재이용하고 있다. 또한 최근 플라스틱을 포함한 도시쓰레기를 자원으로 이용하는 material recycle 방책, 유화기술, 소각에너지 이용, 고형 연료화 기술 등의 향후 추진 방향에 대하여 살펴보았다.대하여 살펴보았다.

  • PDF

Development of Eco Burner Ash Melting Furnace System

  • Sekiguchi, Yoshitoshi;Hamabe, Kohei;Momoda, Shigeru
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2001년도 정기총회 특별강연 및 춘계학술연구발표회(2)
    • /
    • pp.19-22
    • /
    • 2001
  • In recent years, the creation of waste recycling society has been required to cope with the traditional ways of waste treatments. In accordance with the package recycling law in force, calls for the developments of new waste treatment techniques suitable for 21st century are growing higher. A new ash melting furnace system named Eco Burner Ash Melting Furnace System has been developed. It is a burner type ash melting system in which the fluffs made of the plastics segregated from municipal solid wastes are directly fired at high temperature in the furnace. This system provides an economical ash melting system because plastic wastes or paper scraps that have heretofore been considered hard to recycle are used in compensation for fossil fuel. In this paper, we describe the ash melting test results obtained from a substantiative facility.

  • PDF

Inventory Management Practices Approach to Reverse Logistics

  • Wang, Dja-Shin;Koo, Tong-Yuan
    • Industrial Engineering and Management Systems
    • /
    • 제9권4호
    • /
    • pp.303-311
    • /
    • 2010
  • In the last few years growing interest has been dedicated to supply chain management. Modeling complexity is added to supply chain coordination problem by accounting for reverse logistics activities. The objective of this paper is to extend inventory model of manufacturing factory with respect to the production of raw material of forward logistics and recycling material of reverse logistics. The proposed model is applied to a plastic recycling process plant located in Taiwan. The case study improvement scheme shows when the recycling rate of recycling material increases from 15% to 50%, the total inventory cost of manufacturing factory decreases by 12.82%, safety stock volume decreases by 41.19% and the reorder quantity is down by 50.96%. This paper finds whether the results of the model can reach the economic profit through quantitative analysis and encourages companies integrate reverse logistics into the supply chain system.

환경성을 고려한 폐 복합재료(CFRP)의 재활용기법에 대한 연구 (The study on the environmentally friendly recycling method of CFRP)

  • 이철규;김용기;피라다;김정석;주창식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1803-1806
    • /
    • 2008
  • Various efforts of reducing the green house gas in the whole industrial fields including railway industry have been implemented. Tilting train is the key example because it can run more faster on the existing rail than others due to its composite body. The system has an advantage of light weight but also a task to solve, recycling of composite material. To recycle the CFRP(Carbon Fiber Reinforced Plastic), there are two typical methods; chemical and thermal method. In this study, more environmentally friendly recycling method was recommended through the environmental function through comparing both recycling methods.

  • PDF

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

폐플라스틱 정전분리를 위한 하전특성에 관한 연구 (A Study on Surface Charge Characteristics on Various Plastic Materials for Ttiboelectrostatic Separation of Plastic Wastes)

  • 김도균;조희찬;전호석
    • 자원리싸이클링
    • /
    • 제11권3호
    • /
    • pp.37-45
    • /
    • 2002
  • 마찰대전 분리는 서로 상이한 두 물체를 마찰시켜 각자 반대극성으로 하전시킨 후 전기장에 통과시켜 분리하는 기술이며, 이때자 물질의 하전극성은 work function에 의해 각기 다른 극성으로 하전된다. 본 연구에서는 마찰대전을 이용한 정전분리에 기본이 되는 각종 플라스틱의 work function을 알아보는 데 중점을 두었으며 마찰대전 후 하전량에 따른 분리 효율을 도출하여 최적의 운전조건을 위한 하전특성을 알아보았다. 플라스틱 시료는 2가지의 샘플을 가지고 실험하였으며. 이를 각기 다른 재질의 드럼형 마찰하전장치를 이용하여 대전을 시켰다. 또한 Faraday Cage를 이용하여 하전량을 측정한 후 work function을 도출하였다. 하전된 입자는 $\pm$20 kV의 전장에 통과시켜 분리실험을 수행하고 이를 통해서 하전량과 분리효율간의 상관관계를 도출하였다.

공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구 (Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors)

  • 김진기;유성환;임봉수
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

Compatibilization of PET/LDPE Blends

  • Park, Young-Ok;Park, Chang-Nam;Lee, Moo-Sung
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.63-66
    • /
    • 1998
  • The steady growth in the use of plastic materials in packaging applications has caused an increasing concern about the environment and the problem of solid waste disposal. Therefore, the recycling of plastics is the very important problem, which must be solved technically and environmentally [1]. It is technically feasible to recycle, recover and reuse all of the plastics discarded, but economics limit the degree of recycling at this time.(omitted)

  • PDF