• 제목/요약/키워드: plastic film

검색결과 907건 처리시간 0.023초

Ultra Thin Film Barrier Layer for Plastic OLED

  • Kopark, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.44-47
    • /
    • 2004
  • Fabrication of barrier layer on PES substrate and plastic OLED device by atomic layer deposition are carried out. Simultaneous deposition of 30nm of $AlO_x$ film on both sides of PES gives film MOCON value of 0.0615g/$m^2$.day (@38$^{\circ}C$, 100% R.H). Introduction of conformal $AlO_x$ film by ALD resulted in enhanced barrier properties for inorganic double layered film including PECVO $SiN_x$. Preliminary life time to 91% of initial luminance (1300 cd/$m^2$ ) for 100nm of PECVD $SiN_x$/30nm of ALD $AlO_x$ coated plastic OLED device was 260 hours.

  • PDF

Cu-Cr 합금박막의 필 접착력과 소성변형 (Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films)

  • 이태곤;임준홍;김영호
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

The Studying on Drum-type Hill-drop Unit

  • Zhang, Xuejun;Yang, Yin
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.996-998
    • /
    • 1996
  • The drum-type hill-drop unit, an important working device of the plastic -film-covered hill planter, can finish filling and separating seed precisely, perforating film and holing , and its seeding depth and spacing are stability . The unit is applied to hole seed many crops, for example, cotton, corn , soybean, etc. The drum-type hill-drop unit(DHU) , the key work unit to the plastic film-covered planter, mainly consists of distributor box , seeding parts, hole forming unit and drum , It can be operated to accomplish seeds distributing, hole forming , plastic film perforating . Moreover , its inner cavity can be used as seed box.

  • PDF

A Study on Dispersion Behaviors of Fume Particles in Laser Cutting Process of Optical Plastic Thin Films

  • Kim, Kyoungjin
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.62-68
    • /
    • 2019
  • The optoelectronic display units such as TFT-LCD or OLED require many thin optical plastic films and their mass manufacturing processes employ CO2 laser cutting of those thin films in a large quantity. However, laser film cutting could generate fume particles through melt shearing, vaporization, and chemical degradation and those particles could be of great concern for film surface contamination. In order to appreciate the fume particle dispersion behaviors in laser film cutting, this study relies on random particle simulations by probabilistic distributions of particle size, ejection velocity and angles coupled with Basset-Boussinesq-Oseen model of particle trajectory in low Reynolds number flows. Here, up to one million particles of random sampling have been tested to effectively show fume particles dispersed on the film surface. The computational results could show that particular range of fume particle size could easily disperse into the pixel region of processed optical films.

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.

Low temperature pulsed ion shower doping for poly-Si TFT on plastic

  • Kim, Jong-Man;Hong, Wan-Shick;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.95-97
    • /
    • 2004
  • We studied a low temperature ion doping process for poly-Si Thin Film Transistor (TFT) on plastic substrates. The ion doping process was performed using an ion shower system, and subsequently, excimer laser annealing (ELA) was done for the activation. We have studied the crystallinity of Si surface at each step using UV-reflectance spectroscopy and the sheet resistance using 4-point probe. We found that the temperature has increased during ion shower doping for a-Si film and the activation has not been fulfilled stably because of the thermal damage against the plastic substrate. By trying newly a pulsed ion shower doping, the ion was efficiently incorporated into the a-Si film on plastic substrate. The sheet resistance decreased with the increase of the pulsed doping time, which was corresponded to the incorporated dose. Also we confirmed a relationship between the crystallinity and the sheet resistance. A sheet resistance of 300 ${\Omega}$/sq for the Si film of 50nm thickness was obtained with a good reproducibility. The ion shower technique is a promising doping technique for ultra low temperature poly-Si TFTs on plastic substrates as well as those on glass substrates.

  • PDF

The Study of a-Si Film Crystallization using an XeCl Laser Annealing on the Plastic Substrate

  • Kim, Do-Young;Suh, Chang-Ki;Shim, Myung-Suk;Kim, Chi-Hyung;Yi, Jun-Sin;Lee, Min-Chul;Han, Min-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.634-638
    • /
    • 2003
  • We reported the a-Si crystallization using a XeCl excimer laser annealing on the plastic substrate. The poly-Si film is able to grow in the low temperature and light substrate like a plastic. For the preparation of sample, substrate is cleaned by organic liquids. The film of $CeO_{2}$ layer as the buffer layer was grown by sputtering methods. After a-Si film deposition using ICPCVD, the film was crystallized by XeCl excimer laser. In this paper, we present the crystallization properties of a-Si on the plastic substrate

  • PDF

고온용 플라스틱 필름 수위 센서 개발 (Development of Plastic Film Type Water Level Sensor for High Temperature)

  • 이영태
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.

충북(忠北) 지역(地域) 시설재배(施設栽培) 토양(土壤)의 화학적(化學的) 특성(特性) (Chemical Characteristics of Plastic Film House Soils in Chungbuk Area)

  • 강보구;정인명;김재정;홍순달;민경범
    • 한국토양비료학회지
    • /
    • 제30권3호
    • /
    • pp.265-271
    • /
    • 1997
  • 시설재배 토양의 염류집적 현황과 토양중 염류이동을 구명하기 위하여 충북지역의 청주 및 충주에서 토양의 화학적 특성을 조사하였다. 시설재배지의 토성(土性)은 사양토(砂壤土) 30%, 양토(壤土) 27%, 미사질양토(微砂質壤土) 43% 이었고, 표토의 염류농도 분포비율은 $2dS\;m^{-1}$ 이하가 23%, $2{\sim}4dS\;m^{-1}$ 30%, $4{\sim}6dS\;m^{-1}$ 25%, $6dS\;m^{-1}$ 이상이 22%로서 장해발생기준(障害發生基準) $4dS\;m^{-1}$를 초과하는 포장이 약 50% 이었으며, 심토(20~30cm)에서는 $2dS\;m^{-1}$ 이하인 토양이 68%이었다. 시설재배 토양의 EC는 경작년수에 따라 증가하여 5년 이상인 토양에서 $4.47dS\;m^{-1}$ 이상이었고 시설 밖의 노지포장보다 2.8~5.6배 높았다. 여름철 비닐을 제거한 토양의 EC는 $0.71{\sim}2.92dS\;m^{-1}$로서 제거하지 않은 토양의 $3.54{\sim}7.36dS\;m^{-1}$보다 현저히 감소되었다. 시설 재배 토양의 $NO_3-N$, $SO_4-S$ 그리고 Cl 함량은 노지토양에 비하여 각각 2.5. 7.0, 3.4배 높았다.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF