• 제목/요약/키워드: plastic deformation performance

검색결과 229건 처리시간 0.036초

스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구 (A study on Tensile performance of Energy Absorbing Bolts in Space Frame)

  • 이성민;김민숙;최정삼;강창훈
    • 한국공간구조학회논문집
    • /
    • 제7권6호
    • /
    • pp.53-60
    • /
    • 2007
  • 스페이스프레임의 볼 조인트 접합부에서는 축부에 핀의 삽입을 위한 구멍이 존재하기 때문에 응력집중으로 인한 취성파단의 우려가 있다. 따라서 접합부에서의 변형능력이나 에너지흡수능력은 낮은 편이다. 본 연구에서는 볼 조인트 접합부의 소성변형능력을 향상시키기고 현장에서 발생할 수 있는 시공오차의 흡수가 가능하도록, 볼트의 나사부나 핀부의 취성파단 없이 감소된 축부에서 소성변형능력이 기대되는 새로운 접합상세를 개발하였으며 수치해석과 실험을 통해 그 성능을 검증하고자 하였다. 수치해석과 실험을 통하여 볼트의 축부 및 핀부의 단면을 조절함으로써 기존 고력볼트보다 소성변형능력이 향상됨을 확인할 수 있었다.

  • PDF

교차로 포장 소성변형 저감을 위한 해석적 연구 (An Analytical Study to Reduce Plastic Deformation in Intersection Pavements)

  • 최준성;이강훈;권수안;정진훈
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

소성변형을 갖는 원통형 제동장치의 동적거동에 관한 유한요소해석 (Finite Element Analysis on the Dynamic Behavior of a Cylindrical Brake Device with Plastic Deformation)

  • 김지철;이학렬;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.199-204
    • /
    • 2000
  • A cylindrical brake device with plastic deformation is designed to stop the object moving at high velocity. Baseline model is determined based on the design specification and analytic solutions. Using finite element method, effects of various design parameters, such as thickness of the cylinder, clearance between cylinder and rod, and cone angle, to the performance of the brake device are investigated. Cone-type brake device shows better performance than cylindrical brake device with constant thickness in that plastic hinges are generated sequentially from impact end to fixed boundary, thus increasing the reliability of braking operation.

  • PDF

SM490 TMC 강재의 반복소성모델의 정식화 및 유한요소해석 (Formulation of Cyclic Plasticity Model and FE Analysis for SM490 TMC)

  • 장갑철;장경호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.84-89
    • /
    • 2004
  • In this paper, cyclic plasticity model of SM490 TMC was formulated by basing on monotonic loading test and cyclic loading test. For exact description of cyclic performance and plastic deformation capacity of steel member using SM490 TMC, formulated cyclic plasticity model and finite deformation theory were applied to 3-dimensional elastic-plastic FE analysis. Cyclic plastic behavior of pipe-section steel column using SM490 TMC was clarified by carrying out numerical analysis. Also, in order to clarifying seismic performance of pipe-section steel column using SM490 TMC, analysis results were compared with analysis results of pipe-section steel column using SM490. A comparison of analysis results shows that SM490 TMC pipe-section steel column has a better cyclic performance for strength and energy dissipation than SM490 pipe-section steel column under cyclic loading

  • PDF

스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구 (An Experimental study on Failure Mode of Space Frame's Ball joint connection)

  • 이성민;김민숙;김대영;송창영;강창훈
    • 한국공간구조학회논문집
    • /
    • 제7권6호
    • /
    • pp.61-68
    • /
    • 2007
  • 대공간구조에서 접합부의 신뢰도는 매우 중요하다. 접합부에 사용되는 고력볼트의 나사부 유효단면적은 축부단면적보다 작고 볼트 축부에 락핀용 구멍이 있기 때문에 볼트 나사부 또는 락핀용 구멍에 응력집중 현상이 발생하여 취성 파단이 발생할 우려가 높다. 특히 접합부는 직렬형 구조로 이루어져 있다. 따라서 접합부에서의 극한상황시 파괴유형은 필히 취성파괴를 피해야 하며 연성파손으로 유도해야 한다. 따라서 본 연구에서는 볼 조인트 접합부의 소성변형능력을 향상시키고 현장에서 발생할 수 있는 시공오차의 흡수가 가능하도록, 볼트의 나사부나 핀부의 취성파단 없이 소성변형능력 향상을 목표로 하였다. 에너지흡수형 볼트를 사용함으로써 소성변형능력이 향상된 스페이스 프레임의 접합상세를 제안하였다.

  • PDF

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.

판류응력 및 점탄성을 고려한 플라스틱 부품의 후면형 예측 (Prediction of Post-Deformation for Plastic Component Considering Residual Stress and Viscoelasticity)

  • 문형일;김헌영;최철우;정갑식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.341-344
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But. using, transporting, and keeping of plastic component was happened post-deformation. As time goes by and temperature is changed, the post-deformation causes the problems of exterior design and performance. But, it is difficult to estimate the post-deformation by only thermal deformation analysis. Also, the estimation technique of the pest-deformation must be easily applied to product development and it should be reliable because development time of product is limited. In the paper. the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

구조용 나노금속재료의 소성변형 특성 (Plastic Deformation Behavior of Structural Nano Metallic Materials)

  • 윤승채;팜쾅;복천희;곽은정;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2007
  • At the time when nanostructured materials (NSMs) are becoming a major focus of materials research, the attention of researchers is turning more to their mechanical performance. In contrast with conventional coarse grained materials, which are either strong or ductile, but rarely both at the same time, it is expected that with NSMs both high strength and ductility can be achieved and confirmed by several experimental studies. In spite of the significant interest and efforts in the mechanical properties of NSMs, deformation mechanisms during plastic deformation as well as elastic deformation are not well established yet. In this talk, the deformation mechanisms of NSMs under various grain sizes, temperatures and strain rates were investigated. It is based on recent modelling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NSMs. Based on the theoretical model that provides an adequate description of the grain size dependence of elasticity and plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NSMs, especially focusing on the deformation mechanisms was investigated.

  • PDF

HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계 (Baseplate Design to Improve Swaging Performance of Actuator in a HDD)

  • 이행수;홍어진
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.

Effect of Die-upset Process on Magnetic Properties and Deformation Behavior of Nanostructured Nd-Fe-B Magnets

  • Zhao, R.;Zhang, W.C.;Li, J.J.;Wang, H.J.;Zhu, M.G.;Li, W.
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.294-299
    • /
    • 2011
  • Nd-Fe-B high performance magnets were prepared by die-upset forging. The effects of the deformation parameters on magnetic properties and flow stress were studied. Deformation temperatures in the range of $600{\sim}900^{\circ}C$ enable to achieve an effective anisotropy and temperature $800^{\circ}C$ proves to be suitable for deformation of Nd-Fe-B magnets. The amount of c-axis alignment along the press direction seems to depend on the amount of deformation and a saturation behavior is shown at deformation ratio of 75%. Magnetic properties are also related to strain rate, and maximum energy product is attained at an optimum strain rate of ${\varphi}=1{\times}10^{-2}s^{-1}$. By analyzing the relationship of stress and strain at different deformation temperature during die-upset forging process, deformation behavior of Nd-Fe-B magnets was studied and parameters for describing plastic deformation were obtained. Nd-rich boundary liquid phase, which is additionally decreasing the flow stress during deformation, is supposed to play the role of diffusion path and enhance the diffusion rate.