• Title/Summary/Keyword: plastic debris

Search Result 67, Processing Time 0.029 seconds

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Effect of Various Percoll Washings on Motile Sperm Recovery Rate and Motion Kinematics in Frozen-thawed Bovine Semen (다양한 Percoll 세척 방법이 동결-융해된 한우 정자의 회수율 및 운동역학에 미치는 영향)

  • Yoon, Sung-Jae;Park, Yoo-Jin;Cheong, Jin-Yong;Jeong, Kyu-Hyun;Kim, Min-Seop;Yoo, Sae-Mi;Kim, Yun-Hee;Kwon, Woo-Sung;Mohamed, El-Sayed A.;Pang, Myung-Geol
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • The objective of this study was to examine the effect of various discontinuous Percoll washing conditions on motile sperm recovery rate and motion kinematics. Frozen semen samples from 3 bulls (0.5 ml plastic straws, 6% glycerol in egg yolk-Tris-glycerol extender) were thawed in $37^{\circ}C$ water bath for 1 min. After thawing, the mixed semen samples were randomly allocated to 12 treatment groups. Briefly, the spermatozoa were centrifuged for three different time lengths (10, 20, and 30 min) at two gravities ($300{\times}g$ and $700{\times}g$) through two concentrations of discontinuous Percoll density gradient of 1 ml 90%: 1 ml 45% Percoll and 2 ml 90%: 2 ml 45% Percoll to remove extender, debris, and dead spermatozoa. Motile sperm recovery rate and motion kinematics were evaluated by computer assisted sperm analyzer using Makler counting chamber. Sperm motility (%) and motile sperm recovery rate showed similar pattern in all treatment groups. However, sperm motility (%) and motile sperm recovery rate were highest at $700{\times}g$ for 30 min through a discontionous Percoll density gradient of 1 ml 90%: 1 ml 45% Percoll. There were no significant differences in motion kinematics after various Percoll washings. These results suggest that force of centrifugation, centrifugation time, and Percoll volume significantly affect motile sperm recovery rate.

Characteristics of Marine Litters Distribution on the Sea-bed of the East China Sea (동중국해의 해저 폐기물 분포특성)

  • Jeong, Sun-Beom;Lee, Dae-In;Cho, Hyeon-Seo;Kim, Young-Joo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.220-226
    • /
    • 2005
  • This study evaluated the composition and distribution of marine litters on the sea-bed of the East China Sea. Surveys have been conducted by a benthic trawlnet of Dong-baek training ship of Yosu national university during the cruise of 2002-2004. Distribution density showed high value in C5 (north-western area of Jeju Island) with $110.3kg/km^2$ and those of annual mean were about $31-43kg/km^2$. Fishing gears such as nets, pots, octopus jars and etc. were about 42-72% of debris collected in the East China Sea. Composition ratio of rubber, vinyl. metal, plastic, glass, wood, cloth and etc. were within 25% except C5. Rope and drum showed strong fluctuations with 0-30% according to the trawling sites. Some vinyls and nets made in Korea, China and Japan were much collected. It is estimated that fishing gears were discarded to the sea by fishing operation, deliberately or not. An comprehensive program including continuous research, monitoring for marine litters in the Korean sea were necessary.

  • PDF

Guidelines for dental clinic infection prevention during COVID-19 pandemic (코로나 바이러스 대유행에 따른 치과 의료 관리 가이드라인)

  • Kim, Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Dental settings have unique characteristics that warrant specific infection control considerations, including (1) prioritizing the most critical dental services and provide care in a way that minimizes harm to patients due to delayed care, or harm to personnel from potential exposure to persons infected with the COVID-19 disease, and (2) proactively communicate to both personnel and patients the need for them to stay at home if sick. For health care, an interim infection prevention and control recommendation (COVID-19) is recommended for patients suspected of having coronavirus or those whose status has been confirmed. SARS-CoV-2, which is the virus that causes COVID-19, is thought to be spread primarily between people who are in close contact with one another (within 6 feet) through respiratory droplets that are produced when an infected person coughs, sneezes, or talks. Airborne transmission from person-to-person over long distances is unlikely. However, COVID-19 is a new disease, and there remain uncertainties about its mode of spreads and the severity of illness it causes. The virus has been shown to persist in aerosols for several hours, and on some surfaces for days under laboratory conditions. COVID-19 may also be spread by people who are asymptomatic. The practice of dentistry involves the use of rotary dental and surgical instruments, such as handpieces or ultrasonic scalers, and air-water syringes. These instruments create a visible spray that can contain particle droplets of water, saliva, blood, microorganisms, and other debris. While KF 94 masks protect the mucous membranes of the mouth and nose from droplet spatter, they do not provide complete protection against the inhalation of airborne infectious agents. If the patient is afebrile (temperature <100.4°F)* and otherwise without symptoms consistent with COVID-19, then dental care may be provided using appropriate engineering and administrative controls, work practices, and infection control considerations. It is necessary to provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with 60%~95% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins. There is also the need to install physical barriers (e.g., glass or plastic windows) in reception areas to limit close contact between triage personnel and potentially infectious patients. Ideally, dental treatment should be provided in individual rooms whenever possible, with a spacing of at least 6 feet between the patient chairs. Further, the use of easy-to-clean floor-to-ceiling barriers will enhance the effectiveness of portable HEPA air filtration systems. Before and after all patient contact, contact with potentially infectious material, and before putting on and after removing personal protective equipment, including gloves, hand hygiene after removal is particularly important to remove any pathogens that may have been transferred to the bare hands during the removal process. ABHR with 60~95% alcohol is to be used, or hands should be washed with soap and water for at least 20 s.

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

ULTRASTRUCTUAL ANALYSIS OF THE FIBROUS LAYER OF CONDYLE IN THE RAT TEMPOROMANDIBULAR JOINT WITH AGEING (가령에 따른 흰쥐 하악과두 섬유층의 미세구조 및 교원원섬유의 변화)

  • Byeon, Ki-Jeong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.4
    • /
    • pp.305-315
    • /
    • 1998
  • The fibrous layer of mandibular condyle of the neonatal, 1-, 7-, 14-, 27-, 55-days and 1 year old rats were examined in the electron microscope with particular attention to the ultrastructure and diameter of collagen fibrils. In the 1-day rats, most of the cells of the fibrous layer were undifferentiated mesenchymal cells and fibroblasts with rough a little developed rough endoplasmic reticulum(RER) and golgi apparatus(GA). In 7-, 17 and 27-days old rats, most of the fibroblast showed well developed GA and RER with widely distended cisternae containing granular materials. In many of these cells contained intracytoplasmic filaments among the cytoplamic organelle. In 55-day and 1-year old rats, three types of cells were observed, ie, cells containing well developed cytoplasmic organelle presumed to be involved in the collagen fibril synthesis, cells showing well developed lysosomes, golgi apparatus, mitochondria and short cytoplasmic process presumed to be involved in the active resorption of the injured collagen fibrils or cellular debris, cells containing many intracytoplasmic filaments and a little organelle presumed to be cells of inactive state. The average diameters of collagen fibrils were similar in 1- and 7-day old rats as $38.48{\pm}3.81nm$, $38.06{\pm}3.86nm$. That was thickest in 14 days old rats as $50.21{\pm}3.93nm$ among experimental groups. They were gradually thinner in 27-, 55-day rats as $40.05{\pm}2.52nm$, $43.63{\pm}1.20nm$ and thinnest in 1-year old rats as $37.38{\pm}2.17nm$. The distribution pattern of diameters of collagen fibrils were unimordal with peak of 30-60nm in rats from 1-day to 17-day old. With aging from 27-day to 1 year old rats, collagen fibril diameters showed wide distribution pattern and percentage of thin collagen fibrils increased. These results may show the functional adaptation of fibrous layer of mandibular condyle to the increased mechanical forces with aging.

  • PDF