• Title/Summary/Keyword: plastic architecture

Search Result 445, Processing Time 0.03 seconds

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Unequal depth beam to column connection joint

  • Ben Mou;Aijia Zhang;Wei Pan
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.823-837
    • /
    • 2023
  • This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

A Study on Effect of Stabilizing Pile on Stability of Infinite Slope (무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.496-503
    • /
    • 2016
  • To analyze an infinite slope that is reinforced with stabilizing piles, the forces on the stabilizing pile were estimated by the theory of plastic deformation and the theory of plastic flow and the effects of diverse factors on the factor of safety of an infinite slope were investigated. According to the results of the analyses, the factor of the safety of the slope reinforced with stabilized piles were increased tremendously and the factor of safety decreased as the center to center distance of the stabilizing pile increased. The effect of the existence of seepage of the infinite slope with stabilizing piles on the factor of safety appears to be insignificant. Considering the formulated factor of safety of an infinite slope with stabilizing piles, the width and length of the element of the infinite slope and force on the stabilizing pile influence the factor of safety of the infinite slope with a stabilizing pile including the soil strength parameter, inclination of the slope and depth of the slope, which are important for calculating the factor of safety of a non-reinforced infinite slope. The factor of safety of an infinite slope with stabilizing piles derived from the theory of plastic deformation were increased significantly with the internal friction angle of the soil, and the minimum and the maximum factor of safety under the conditions considered in this study were 13.7 and 65.6, respectively. As the diameter of the stabilizing pile increased, the forces on the stabilizing pile also increased but the factor of safety of the infinite slope with stabilizing piles decreased due to the effects of the width and the length of the element of the infinite slope. The factor of safety of the infinite slope with stabilizing piles derived from plastic flow were much larger than that of the non-reinforced infinite slope and the factor safety of the infinite slope with a stabilizing pile increased with increasing product of the flow velocity and plastic viscosity ( ) and the factor of safety of the infinite slope with stabilizing piles decreased with increasing center to center distance of the pile.

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.

Morphological Characteristics and Growth Rate of Medium-Leaf Type Zoysiagrasses Collected at Major Sod Production Area in S. Korea (국내 잔디 주 생산지역에서 수집된 한국잔디류의 형태적 특성 및 생육속도)

  • Choi, Joon-Soo;Yang, Geun-Mo;Oh, Chan-Jin;Bea, Eun-Ji
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Field experiments were conducted to evaluate the morphological characteristics and growth rates of 101 medium-leaf type zoysiagrasses (Zoysia spp.) collected at the major sod production area (Jang Seong Gun) in South Korea. Collected lines with distinctive morphology and visual growth rate were planted in plastic pots and measured morphological characteristics under the plastic house conditions. Variation of leaf width, plant height, leaf angle, length of leaf sheath, trichome, stolon length, and color were measured. Six lines were selected by evaluating growth rates from one hundred one collected lines. Eight standard cultivars and three other superior lines previously collected were compared to 7 selected lines form Jang seong area by checking growth rates and morphological characteristics. Average leaf blade width was 3.4 mm, leaf angle was 45.8 degree, plant height was 21.6 cm, height of lowest leaf was 5.0 cm, and length of leaf blade was 14.1 cm. Ground cover rates of selected lines 'CY6097' and 'CY6069' were 70% and 68.3%, respectively. These are believed to be faster than 60% ground cover rate of zoysiagrass 'Anyang', and also, twice as faster than the 31.7% ground cover rate of Z. matrella. Selected line 'CY6069' showed fast growth rate with shorter internode length (5.1 cm) compared to zoysiagrass 'Anyang'. Based on the results of this study, we could select useful fast growing zoysiagrass breeding lines from the major sod production area (Jang Seong Gun) in Korea.

A Study on the Image Evaluation for the Improvement of the Landscape of Horticultural Complex in Rural Area (농촌지역 시설원예단지의 경관 개선을 위한 이미지평가)

  • Kong, Minjae;Lee, Siyoung;Kang, Donghyeon;Park, Minjung;Yun, Sungwook;Shin, Jihoon;Son, Jinkwan
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • Humans are provided with a wide range of public benefits from ecosystems and agricultural ecosystems, but the establishment of the horticulture complex could be a space that hampers the public function of the agricultural ecosystem. In this study, we sought to focus the function of landscape creation of agricultural landscape and tried to analyze the landscape of the horticulture complex. Therefore, This study aims to suggest ways to build a greenhouse complex which is being indiscreetly introduced in the agriculture landscape through environmentally-friendly manner and minimize the function of the ecosystem service. We divided the greenhouse complex into two categories of Plastic Greenhouse(v) and Glass Greenhouse(g), and compared them to the Netherland and Japan counterparts. Each image of research areas was selected by 3 pics and polled by a total of 101 people. The results of the Evaluation of Landscape Image are as shown in the figure. Netherland Glass Greenhouse scored 1.80 in terms of 'Neat' which is one of the given 15 adjectives. Study results shows that Korean Plastic Greenhouse landscapes need to endeavor Japanese vinly greenhouses and Dutch glasshouses. Consequently, an analysis on the elements of landscapes including green area, variant elements, separation distance is essential in order to improve our country's greenhouse complex landscapes. In this regard, continuous research is required to improve rural landscapes and harmonize large-scale horticultural facilities into the existing agricultural ecosystem.

Characteristics of a CFRP Cruiser's Windage Area by Stability Assessment (탄소섬유강화복합재료(CFRP) 레저선박의 횡요저항력 평가에 의한 상부구조물 풍압면적 특성)

  • Kim, Do-Yun;Lee, Chang-Woo;Lee, Dong-Kun;Oh, Dae-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.774-780
    • /
    • 2014
  • This research aims to investigate the superstructure characteristics of the CFRP-yachts whose hulls are made of the light-weight material CFRP. CFRP-yachts, which belong to light-weight yachts, have a tendency of having very small superstructures compared to other vessels of the same length, and such a tendency is closely related to stability. In this research, a comparison of shape characteristics was made between common composite-plastic yachts and CFRP-yachts to find out the shape characteristics of CFRP-yacht. In the meantime, a case study was conducted concerning shape changes in superstructure to understand the effect of such changes on stability. For this purpose the shapes of a total of 10 GFRP-yachts and CFRP-yachts were comparatively analyzed, and the result showed the tendency of their hulls and superstructures. Whereas the case study on stability assessment involved various superstructure shapes of CFRP yachts, for assessment by superstructure size. Stability assessment was according to ISO 12217 (Small craft Stability and buoyancy assessment and categorization). A program was also developed based on stability assessment process due to rolling in beam waves and wind, and it was applied to the case study. The result of the case study showed that the windage area distribution tendency of the yachts whose hulls were made of the light-weight material CFRP was similar to that of the GFRP-yachts, but that the superstructure shapes of the CFRP-yachts were about 50% smaller than those of the GFRP-yachts. In addition, the stability assessment involving various superstructure areas of the CFRP-yachts showed that problems with stability occurred when their superstructure sizes were similar to, or larger by about 10% than, those of the GFRP-yachts.

The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

  • Park, Jeong-ung;An, Gyubaek;Woo, Wanchuck
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.129-140
    • /
    • 2018
  • A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress). In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180 MPa, while in case of thickness at 70 mm, it was 200 MPa. The increase in compressive residual stress is almost the same as the initial stress. However, if initial stress was tensile, there was no significant change in the maximum compression residual stress.

A Study on Finite Element Methods for HSS(Hollow Square Section) Steel Columns Strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) Sheets (탄소섬유쉬트(CFRP Sheets)로 보강된 각형강관(HSS)기둥의 유한요소해석 연구)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.185-194
    • /
    • 2016
  • This paper presents the finite element method results for HSS(Hollow Square Section) steel columns strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) sheets. 6 specimens were fabricated and the specimen groups were non-compact short columns, slender short columns, and non-compact long columns. Test parameter was the number of CFRP ply. The finite element analysis was performed by using ANSYS Workbench V.14.0 and the results of FEM were compared with those of Test for failure mode, load-displacement curve, maximum load, and initial stiffness. The comparisons between experimental observations and computed results show that the analyses provided good correlation to actual behavior. Finally, the buckling stress were calculated according to the AISC cold-formed structure provision and the retrofitting effect were verified for each section type.