• 제목/요약/키워드: plasmid detection

검색결과 104건 처리시간 0.034초

Development of a Quantitative Real-time Nucleic Acid Sequence based Amplification (NASBA) Assay for Early Detection of Apple scar skin viroid

  • Heo, Seong;Kim, Hyun Ran;Lee, Hee Jae
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.164-171
    • /
    • 2019
  • An assay for detecting Apple scar skin viroid (ASSVd) was developed based on nucleic acid sequence based amplification (NASBA) in combination with realtime detection during the amplification process using molecular beacon. The ASSVd specific primers for amplification of the viroid RNA and molecular beacon for detecting the viroid were designed based on highly conserved regions of several ASSVd sequences including Korean isolate. The assay had a detection range of $1{\times}10^4$ to $1{\times}10^{12}$ ASSVd RNA $copies/{\mu}l$ with reproducibility and precision. Following the construction of standard curves based on time to positive (TTP) value for the serial dilutions ranging from $1{\times}10^7$ to $1{\times}10^{12}$ copies of the recombinant plasmid, a standard regression line was constructed by plotting the TTP values versus the logarithm of the starting ASSVd RNA copy number of 10-fold dilutions each. Compared to the established RT-PCR methods, our method was more sensitive for detecting ASSVd. The real-time quantitative NASBA method will be fast, sensitive, and reliable for routine diagnosis and selection of viroid-free stock materials. Furthermore, real-time quantitative NASBA may be especially useful for detecting low levels in apple trees with early viroid-infection stage and for monitoring the influence on tree growth.

Bacillus pumilus TX703 유래 Xylanase 유전자(xynK)의 Cloning과 염기서열 분석 (Molecular Cloning and Analysis of Nucleotide Sequence of Xylanase Gene (xynk) from Bacillus pumilus TX703)

  • 박영서
    • 생명과학회지
    • /
    • 제12권2호
    • /
    • pp.188-199
    • /
    • 2002
  • Xylanase를 생산하는 내열성 Bacillus pumilus TX703의 chromosomal DNA로부터 xylanase 유전자를 cloning하여 그 염기배열 순서를 결정한 다음 이로부터 유전자 발현에 관련된 구조를 분석하였다. Xylanase 유전자의 cloning을 위해 제한효소 HindIII로 절단한 B. pumilus TX703의 chromosomal DNA와 pUC19을 ligation시켜 E. coli DH5 $\alpha$에 형질전환시킨 후 형질전환체 중에서 xylanase 활성을 나타내는 재조합 plasmid pXES106을 분리하였다. 재조합 plasmid pXES106은 pUC19의 HindIII 부위 내에 2.24 kb의 외래 DNA가 삽입되었고, 이 plasmid DNA를 분리하여 E. coli DH5 $\alpha$에 재형질전환시킨 결과 vector 내에 xylanase 유전자가 cloning되었음을 확인하였다. Cloning된 유전자의 염기배열을 분석한 결과 이 유전자의 총 크기는 2,187 bp였고 이는 409개기 아미노산을 coding 하는 open reading frame 1,227 bp를 포함하고 있었다. 이 염기배열은 ATG개시 codon으로부터 각각 193과 216 base 상류에 TTTAAT의 -10 box와 TCGAAA인 -35 box로 추정되는 염기배열이 존재하였고 -10 box로부터 7 bp하류에 전사개시점인 A가 위치하고 있었다. 또한, 개시 codon으로부터 432 bp 상류에 공통염기배열과 14개의 염기 중 11개의 염기가 일치하는 TGATGGCGTCGGCA의 catabolite responsive element (CRE)가 존재하였다. B. pumilus TX703의 xylanase와 아미노산배열의 유사성이 가장 높은 xylanase는 Hordeum vulgare의 isozyme X-I이었고 본 xylanase는 208번째와 322번째에 glutamic acid 잔기를 가지고 있어 Clostridium thermocellum, Dictyoglomus thermophilum, Thermotoga neapolitana 등에서 밝혀진 바와 같이 glutamic acid 부위가 xylanase의 활성부위라 여겨진다.

Detection of mcr-1 Plasmids in Enterobacteriaceae Isolates From Human Specimens: Comparison With Those in Escherichia coli Isolates From Livestock in Korea

  • Yoon, Eun-Jeong;Hong, Jun Sung;Yang, Ji Woo;Lee, Kwang Jun;Lee, Hyukmin;Jeong, Seok Hoon
    • Annals of Laboratory Medicine
    • /
    • 제38권6호
    • /
    • pp.555-562
    • /
    • 2018
  • Background: The emerging mobile colistin resistance gene, mcr-1, is an ongoing worldwide concern and an evaluation of clinical isolates harboring this gene is required in Korea. We investigated mcr-1-possessing Enterobacteriaceae among Enterobacteriaceae strains isolated in Korea, and compared the genetic details of the plasmids with those in Escherichia coli isolates from livestock. Methods: Among 9,396 Enterobacteriaceae clinical isolates collected between 2010 and 2015, 1,347 (14.3%) strains were resistant to colistin and those were screened for mcr-1 by PCR. Colistin minimum inhibitory concentrations (MICs) were determined by microdilution, and conjugal transfer of the mcr-1-harboring plasmids was assessed by direct mating. Whole genomes of three mcr-1-positive Enterobacteriaceae clinical isolates and 11 livestock-origin mcr-1-positive E. coli isolates were sequenced. Results: Two E. coli and one Enterobacter aerogenes clinical isolates carried carried IncI2 plasmids harboring mcr-1, which conferred colistin resistance (E. coli MIC, 4 mg/L; E. aerogenes MIC, 32 mg/L). The strains possessed the complete conjugal machinery except for E. aerogenes harboring a truncated prepilin peptidase. The E. coli plasmid transferred more efficiently to E. coli than to Klebsiella pneumoniae or Enterobacter cloacae recipients. Among the three bacterial hosts, the colistin MIC was the highest for E. coli owing to the higher mcr-1-plasmid copy number and mcr-1 expression levels. Ten mcr-1-positive chicken-origin E. coli strains also possessed mcr-1-harboring IncI2 plasmids closely related to that in the clinical E. aerogenes isolate, and the remaining one porcine-origin E. coli possessed an mcr-1-harboring IncX4 plasmid. Conclusions: mcr-1-harboring IncI2 plasmids were identified in clinical Enterobacteriaceae isolates. These plasmids were closely associated with those in chicken-origin E. coli strains in Korea, supporting the concept of mcr-1 dissemination between humans and livestock.

Development of a Quantitative PCR for Detection of Lactobacillus plantarum Starters During Wine Malolactic Fermentation

  • Cho, Gyu-Sung;KrauB, Sabrina;Huch, Melanie;Toit, Maret Du;Franz, Charles M.A.P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1280-1286
    • /
    • 2011
  • A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at $3.6{\times}10^6$ CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above $10^5$/ml for approx. 10 days, after which cell numbers decreased to levels of $10^3$ CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. $1{\times}10^2$ CFU/ml was detected. The minimum detection level for quantitative PCR in this study was $1{\times}10^2$ to $1{\times}10^3$ CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

분자 비컨을 이용한 살아 있는 세포에서 단일클론항체 경쇄와 중쇄 mRNA 검출에 의한 세포주 선별방법 (Live Cell Detection of Monoclonal Antibody Light and Heavy Chain mRNAs using Molecular Beacons)

  • 정승아;이원종
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.33-39
    • /
    • 2016
  • Developing the method for the selection of animal cell line producing therapeutic monoclonal antibody (mAb) is invaluable as its market is rapidly growing. Although the quality of produced mAb is as important as quantity, however there is no method developed for the selective screening of cell lines on the basis of both quantity and quality. From recent reports, the ratio of light and heavy chain mRNAs of mAb in the cell is a key parameter for the indication of product quality. Therefore, it is obvious that developing the novel method that can detect both light and heavy chain mRNAs in single live cell will provide unprecedented opportunities in bio-industry. Here, we have constructed oligonucleotide probes, molecular beacons for the detection of light or heavy chain mRNAs, respectively, in the live cells producing mAbs. Both beacons showed increased fluorescent intensity after transient transfection of plasmid expressing mAbs analyzed by fluorometer. Flow cytometric analysis clearly demonstrated that both molecular beacons can simultaneously detect the expression of light and heavy chain mRNAs of mAb in the same cell. The technique described in the thesis provides the new direction and concept for developing the method for the smart selection of cell lines producing recombinant proteins including therapeutic mAbs.

Construction of a Reporter Strain Pseudomonas putida for the Detection of Oxidative Stress Caused by Environmental Pollutants

  • Lee Yun-Ho;Ahn Eun-Young;Park Sung-Su;Madsen Eugene L.;Jeon Che-Ok;Park Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.386-390
    • /
    • 2006
  • A green fluorescent protein-based Pseudomonas putida reporter was successfully constructed and shown to be capable of detecting oxidative stress. In this whole-cell reporter, the promoter of the paraquat-inducible ferredoxin-$NADP^+$ reductase (fpr) was fused to a promoterless gfp gene on a broad-host-range promoter probe vector. Pseudomonas putida KT2440 harboring this reporter plasmid exhibited an increased level of gfp expression in the presence of redox-cycling agents (paraquat and menadione), hydrogen peroxide, and potential environmental pollutant chemicals such as toluene, paint thinner, gasoline, and diesel. Induction of fpr in the presence of these chemicals was confirmed using Northern blot analysis.

Thyroid Hormones Receptor/Reporter Gene Transcription Assay for Food Additives and Contaminants

  • Jeong Sang-Hee;Cho Joon-Hyoung
    • Toxicological Research
    • /
    • 제21권4호
    • /
    • pp.333-338
    • /
    • 2005
  • Many of thyroid hormones disrupting chemicals induce effects via interaction with thyroid hormone and retinoic acid receptors and responsive elements intrinsic in target cells. We studied thyroid hormones disrupting effects of food additives and contaminants including BHA, BHT, ethoxyquin, propionic acid, sorbic acid, benzoic acid, CPM, aflatoxin B1, cadmium chloride, genistein, TCDD, PCBs and TDBE in recombinant HeLa cells containing plasmid construct for thyroxin responsive elements. The limit of response of the recombinant cells to T3 and T4 was $1\times10^{-12}\;M$. BHA. genistein, cadmium and TBDE were interacted with thyroid receptors with dose-responsive pattern. In addition, BHA, BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, and TBDE showed synergism while cadmium chloride antagonism for T3-induced activity. This study elucidates that recombinant HeLa cell is sensitive and high-throughput system for the detection of chemicals that induce thyroid hormonal disruption via thyroid hormone receptors and responsive elements. Also this study raised suspect of BHA. BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, TBDE, genisteine and cadmium chloride as thyroid hormonal system disruptors.

Inhibitory Effects of Syk Transfection on Lung Cancer Cell Invasion

  • Peng, Chuan-Liang;Zhang, Ying;Sun, Qi-Feng;Zhao, Yun-Peng;Hao, Ying-Tao;Zhao, Xiao-Gang;Cong, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3001-3003
    • /
    • 2013
  • Objective: Spleen tyrosine kinase (Syk) is closely related to tumor invasion and metastasis, and has been shown to have potential inhibitory effects in tumors. In this study, we constructed a eukaryotic expression vector for Syk and analyzed its effects on invasive ability of the A549 non-small cell lung cancer cell line in vitro. Methods: A fragment of Syk was obtained by RT-PCR from human lung cancer cells and cloned into the expression vector pLNCXSyk. After restriction endonuclease digestion, PCR and DNA sequencing confirmation, the recombinant Syk expression plasmid was transfected into A549 human lung cancer cells using lipofectamine protocols. After selection, the cells stably expressed Syk. Detection of Syk expression of the cells by RT-PCR, and invasive ability were examined. Results: The eukaryotic expression plamid pLNCXSyk was constructed and expressed stably in the A549 human lung cancer cells. The RT-PCR results showed that Syk mRNA expression was upregulated significantly (P<0.05). Lower invasion through a basal membrane were apparent after transfection (P<0.05). Conclusions: A eukaryotic expression plasmid to cause Syk expression in lung cancer cells can obviously inhibit their invasive ability in vitro.

Whole genome sequencing analysis on antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia

  • Hadri Latif;Debby Fadhilah Pazra;Chaerul Basri;I Wayan Teguh Wibawan;Puji Rahayu
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.44.1-44.13
    • /
    • 2024
  • Importance: The emergence and rapid increase in the incidence of multidrug-resistant (MDR) bacteria in pig farms has become a serious concern and reduced the choice of effective antibiotics. Objective: This study analyzed the phylogenetics and diversity of antibiotic resistance genes (ARGs) and molecularly identified the source of ARGs in antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia. Methods: Forty-four antibiotic-resistant E. coli isolates from fecal samples from 44 pig farms in Banten Province, Indonesia, were used as samples. The samples were categorized into 14 clusters. Sequencing was performed using the Oxford Nanopore Technologies MinION platform, with barcoding before sequencing with Nanopore Rapid sequencing gDNA-barcoding (SQK-RBK110.96) according to manufacturing procedures. ARG detection was conducted using ResFinder, and the plasmid replicon was determined using PlasmidFinder. Results: Three phylogenetic leaves of E. coli were identified in the pig farming cluster in Banten Province. The E. coli isolates exhibited potential resistance to nine classes of antibiotics. Fifty-one ARGs were identified across all isolates, with each cluster carrying a minimum of 10 ARGs. The ant(3'')-Ia and qnrS1 genes were present in all isolates. ARGs in the E. coli pig farming cluster originated mainly from plasmids, accounting for an average of 89.4%. Conclusions and Relevance: The elevated potential for MDR events, coupled with the dominance of ARGs originating from plasmids, increases the risk of ARG spread among bacterial populations in animals, humans, and the environment.

무작위로 클로닝한 Porphyromonas endodontalis ATCC 35406 지놈 DNA의 제한절편 hybridization법에 의한 세균동정 (BACTERIAL IDENTIFICATION WITH RANDOM-CLONED RESTRICTION FRAGMENT OF Porphyromonas endodontalis ATCC 35406 GENOMIC DNA)

  • 엄원석;윤수한
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.645-654
    • /
    • 1995
  • Porphyromonas endodontalis is a black-pigmented anaerobic Gram negative rod which is associated with endodontal infections. It has been isolated from infected dental root canals and submucous abscesses of endodontal origin. DNA probe is an available alternative, offering the direct detection of a specific microorganism. Nucleic-acid probes can be off different types: whole different: whole-genomic, cloned or oligonucleotide probes. Wholegenomic probes are the most sensitive because the entire genome is used for possible hybridization sites. However, as genetically similar species of bacteria are likely to be present in specimences, cross-reactions need to be considered. Cloned probes are isolated sequences of DNA that do not show cross-reactivity and are produced in quantity by cloning in a plasmid vector. Cloned probes can approach the sensitivity found with whole-genomic probes while avoiding known cross-reacting species. Porphyromonas endodontalis ATCC 35406 (serotype $O_1K_1$) was selected in this experiment to develop specific cloned DNA probes. EcoR I-digested genomic DNA fragments of P. endodontalis ATCC 35406 were cloned into pUC18 plasmid vector. From the E. coli transformed with the recombinant plasmid 4 clones were selected to be tested as specific DNA probes. Restriction-digested whole-genomic DNAs prepared from P. gingivalis 38(serotype a), W50(serotype b), A7A1-28(serotype C), P. intermedia 9336(serotype b), G8-9K-3(serotype C), P. endodontalis ATCC 35406(serotype $O_1K_1$), A. a Y4(serotype b), 75(serotype a), 67(serotype c), were each seperated on agarose gel electrophoresis, blotted on nylon membranes, and were hybridized with digoxigenin-dUTP labeled probe. The results were as follows: 1. Three clones of 1.6kb(probe e), 1.6kb(probe f), and 0.9kb(probe h) in size, were obtained. These clones were identified to be a part of the genomic DNA of P. endodontalis ATCC 35406 judging from their specific hybridization to the genomic DNA fragments of their own size on Southern blot. 2. The clones of 4.9kb(probe i) was identified to be a part of the genomic DNA of P. endodontalis ATCC 35406. but not to specific for itself. It was hybridized to P. gingivalis A7A1-28, P. intermedia G89K-3.

  • PDF