• Title/Summary/Keyword: plasma-chemical reactor

Search Result 143, Processing Time 0.025 seconds

Study on the Adhesive Properties of Polyesters Reinforcing Materials

  • Krump, H.;Hudec, I.;Cernak, M.;Janypka, P.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.192-194
    • /
    • 2002
  • Polyester cord yarns have been treated in an atmospheric-pressure nitrogen plasma reactor in order to enhance their adhesion to rubber. A thin layer or the plasma was generated in the close vicinity of the yam surface using various types or surface discharge. To assess the effect of the plasma treatment on fiber surface properties, the cord thread/rubber matrix adhesion values measured using the untreated and threads cord threads were compared. The static and dynamic adhesion of the cord thread to rubber was characterized by using the standard Henley test. The dynamic adhesion values for the reference and plasma treated fiber were $7,3{\pm}1,2\;N$ and $83,5{\pm}3,5\;N$. The surface properties were investigated by scanning electron microscopy, infrared spectroscopy and electron spin resonance spectroscopy. It is concluded that both polar group interactions and increased surface area of the fibers are responsible for the improved adhesive strength.

Reuse of Spent FCC Catalyst for Removing Trace Olefins from Aromatics

  • Pu, Xin;Luan, Jin-Ning;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2642-2646
    • /
    • 2012
  • Pretreatment of spent FCC catalyst and its application in remove trace olefins in aromatics were investigated in this research. The most effective pretreatment route of spent FCC catalyst was calcining at $700^{\circ}C$ for 1 h, washing with 5% oxalic acid solution in ultrasonic reactor and dried. Treated spent FCC catalyst was modified with metal halides, then to prepare catalyst to remove trace olefins in aromatics. X-ray diffraction, Pyridine-FTIR, $N_2$ adsorption-desorption and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to investigate the pretreatment process. The result showed that the performance of the treated spent FCC catalyst was much greater than that of the spent FCC catalyst, which indicted the possibility and improvement of this research.

Reactor design of PECVD system using a liquid aerosol feed method (미립액상법을 위한 PECVD 반응로설계)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.235-243
    • /
    • 1997
  • The high-$T_c$ superconducting phase, $YBa_2Cu_3O_x$, was deposited on the single crystal MgO substrate, using a liquid aerosol feed method in a plasma enhanced chemical vapor deposition(PECVD) reactor. The effect of the plasma distribution depending on the design of a reactor was studied by the analysis of the microstructures of thin films. The particles landed were frequently observed on the films and the two causes that were responsible for the particle deposition were explained. The particles were deposited by the unstable and non-uniform plasma and the low evaporation rate of the precursors. Also, the thin film deposition rate decreased significantly as the distance between the evaporating location and the substrate increased.

  • PDF

Adhesion Enhancement of Polymer Material Using Atmospheric Plasma (III) (대기압 플라즈마를 이용한 고분자 소재의 접착력 향상 (III))

  • Sim, Dong Hyun;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • An atmospheric plasma pre-treatment method was applied to EVA foam, Leather (Action), Rubber and Unwoven to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas (nitrogen), rate of gas flow (30~100 mL/min), and reaction time (0~30 sec) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of 10 second for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the contact angle of the EVA foam, Leather (Action) and Rubber also resulted in the improvement of the adhesion.

  • PDF

Surface Modification of Polymeric Material Using Atmospheric Plasma (대기압 플라즈마를 이용한 고분자 소재의 표면개질)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.433-439
    • /
    • 2008
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam (density: 0.27) and rubber (butadiene rubber) to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of treatment gas (nitrogen, argon, oxygen, air), rate of gas flow ($30{\sim}100\;mL/min$), and treated time ($0{\sim}30\;s$) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of polyurethane foam 10 s and rubber 3 s for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the wettability of the polyurethane foam and rubber also resulted in the improvement of the adhesion.

Preparation of $TiO_2$-Coated Polypropylene Beads by PCVD Process for Phenol Removal

  • Pham, Hung-Cuong;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.185-185
    • /
    • 2009
  • Polypropylene beads (PP) coated with $TiO_2$ thin films were prepared by a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and were used to remove phenol in aqueous solution. The $TiO_2$ thin films of 416 nm thickness were coated on the PP particles uniformly. As the number of $TiO_2$-coated PP beads increases, the phenol is degraded faster, because of larger total surface area of photocatalysts for photodegradation. This study shows that a rotating cylindrical PCVD reactor can be a good method to prepare the particles coated with high-quality $TiO_2$ thin films, which can be applied to the pollutant removal by a photodegradation reaction of $TiO_2$ with high efficiency.

  • PDF

A Study on Combined Processes of Sliding Arc Plasma and Corona Dielectric Barrier Discharge for Improve the Efficiency Treatment of Harmful Substance (슬라이딩아크 방전과 코로나 방전의 복합공정을 통한 유해물질 처리효율 개선에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.108-113
    • /
    • 2014
  • The combined process of Sliding Arc Plasma and corona dielectric barrier discharge process (CDBD) was used to efficiently improve harmful substance, which convert into OH radicals which have strong oxidation potential, and so have deodorization and sterilizing effects, by generating specific radicals and anion and then reacting with the moisture contained in harmful substance. As a result of experiment, even if the size of SAP reactor is reduced from 80 A to 50 A, there is no much change and therefore it is judged the size of reactor may be minimized. And it was confirmed that after the anion and ozone generated from CDBD rector react with harmful substance, a anion was reduced from 510,000 ppb to 470 ppb and ozone from 98 ppb to 22 ppb. It was also judged the stability and durability of plasma producer are excellent. Accordingly, it is considered the harmful substances which exist in indoor air quality will be efficiently improved and removed by using further plasma combined process through this study.

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

Study on High Degree of Efficiency Chemical Reactor for Air Purification Using the Glow Discharge (글로우 방전을 이용한 고효율 공기 정화용 화학 반응기의 특성관찰에 관한 연구)

  • Kim, Gi-Ho;Bu, Min-Ho;Lee, Sang-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • the basic model of chemical reactor using glow discharge, we used cathode discharge cell with vacant cavity in the middle. Currently glow discharge is widely studied as a radiation source or atomization device in atomic spectroscopy and remarkable technological achievements are made through the graft with other analysis devices such as microanalysis and steel analysis.1 Additionally, as the characteristics of basic glow discharge and radiation have been reviewed many times, those results could be used in this experiment.2-3 In 1993, an article regarding the treatment of poisonous gas in the air using low temperature plasma was published. According to this article, if DC Glow Discharge is used under continuous atmospheric flow, poisonous gases such as SO2 and NO can be removed.4 Based on those findings, we designed highly efficient reactor where stable air plasma is composed and all air flow pass the negative glow area passing through the tube. It was observed that the cathode tube type glow discharge developed in this study would be economical, easy to use and could be used as radiation source as well.