• 제목/요약/키워드: plasma spray coating

검색결과 224건 처리시간 0.026초

인공해양환경에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Zn 코팅 강재의 내식성능 평가에 관한 연구 (Study on Corrosion Resistance Performance of Zn Coating Applied by Arc Thermal and Plasma Arc Spray Process in Artificial Ocean Water)

  • 잔 낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2020
  • In present study, we have deposited the Zinc coating using arc thermal spray and plasma arc spray processes onto the steel substrate and durability of the deposited coating was evaluated. The bond adhesion result shows that plasma arc sprayed Zn coating exhibited higher in its value compared to arc thermal spray. SEM shows that Zn coating deposited by plasma arc process is more compact, less porous and adherent compare to arc spray process. The corrosion resistance properties are evaluated in artificial ocean water solution with exposure periods. EIS results show that total impedance at 0.01 Hz of plasma arc sprayed coating is higher than arc thermal spray owing to the compact and less porous morphology. It is concluded that plasma arc sprayed Zn coating is better than arc thermal spray process.

  • PDF

플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성 (Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray)

  • 김귀식;박경석;홍용의
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.69-74
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4.5wt.%Al and titanium dioxide powder $TiO_2$. These powders were coated on a carbon steel S45C by plasma spray method. The result solution was a 5% NaCl and the slat spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성 (Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray)

  • 김귀식;박경석;홍용의
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4,5wt.%Al and titanium dioxide powder Ti02. These powders were coated on a carbon steel S45C by plasma spray method. The salt solution was a 5% NaCl and the salt spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화 (Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구 (Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process)

  • 권의표;이종권
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Plasma용사한 $Al_2O_3-40%TiO_2$의 미끄럼마모특성에 미치는 용사조건의 영향 (The Effects of Spray Conditions on Sliding Wear Characteristics of Plasma Sprayed $Al_2O_3-40%TiO_2$Coating)

  • 이한영;노정균;배상규
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.80-88
    • /
    • 2000
  • The plasma spray technics has known as one of the surface modification methods to improve the mechenical properties or the functional charactristics of materials. This paper has been aimed to investigate the effects of plasma sprayed conditions, such as spray distance and arc power level, on sliding wear properties of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer. The sliding wear test using pin-on-disc type wear machine, has been conducted in several sliding speed for coating layer sparyed under different conditions. The result of this paper is that the wear resistance of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer is fluctuated with tile spray distance and the arc power level. The wear resiatance could be improved with decreasing the spray distance and with increasing the arc power level.

  • PDF

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

Acoustic Emission 파형분류에 의한 플라즈마 용사 코팅재의 인장해석 (Tensile Analysis of Plasma Spray Coating Material by Classification of AE Signals)

  • 김귀식;오명범
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.60-65
    • /
    • 2001
  • Thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, Stacking of the particles makes coating. In this study, the exfoliation of $Al_2$O$_3$ and Ni-4.5wt.%Al thermally sprayed coating which were deposited by an atmospheric plasma spray apparatus are investigated using an AE method. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. The wave forms of AE generated from the three coating specimens can be classified by FFT analysis into two types which low frequency(type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip or the resultant fracture of coating. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF