• 제목/요약/키워드: plasma reactor

검색결과 481건 처리시간 0.027초

Dissolution Characteristics of Copper Oxide in Gas-liquid Hybrid Atmospheric Pressure Plasma Reactor Using Organic Acid Solution

  • Kwon, Heoung Su;Lee, Won Gyu
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.229-233
    • /
    • 2022
  • In this study, a gas-liquid hybrid atmospheric pressure plasma reactor of the dielectric barrier discharge method was fabricated and characterized. The solubility of copper oxide in the organic acid solution was increased when argon having a larger atomic weight than helium was used during plasma discharge. There was no significant effect of mixing organic acid solutions under plasma discharge treatment on the variation of copper oxide's solubility. As the applied voltage for plasma discharge and the concentration of the organic acid solution increased, the dissolution and removal power of the copper oxide layer increased. Solubility of copper oxide was more affected by the concentration in organic acid solution rather than the variation of plasma applied voltage. The usefulness of hybrid plasma reactor for the surface cleaning process was confirmed.

마이크로 채널 반응기 내 상압 글로우 플라즈마 생성 및 응용 (Generation and Application of Atmospheric Pressure Glow Plasma in Micro Channel Reactor)

  • 이대훈;박현향;이재옥;이승섭;송영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1869-1873
    • /
    • 2008
  • In this work, to make it possible to generate glow discharge in atmospheric pressure condition with relatively high and wide electric field, micro channel reactor is proposed. Si DRIE and Cr deposition by Ebeam evaporation is used to make channel and bottom electrode layer. Upper electrode is made from ITO glass to visualize discharge within micro channel. Fabricated reactor is verified by generating uniform glow plasma with N2 / He gases each as working fluid. The range of gas electric field to generate glow plasma is from about 200 V/cm and upper limit is not observed in tested condition of up to 150 kV/cm. This data shows that micro channel plasma reactor is more versatile. Indirect estimation of electron temperature in this reactor can be inferred that the electron temperature within glow discharge in micro reactor lies $0{\sim}2eV$. This research demonstrates that the reactor is appropriate in application that needs to maintain low temperature condition during chemical process.

  • PDF

세라믹 벌집형 담체를 사용한 광촉매 반응기의 플라즈마 생성에 관한 연구 (A Study of Non-thermal Plasma Generation on a Photocatalytic Reactor Using a Ceramic Honeycomb Monolith Substrate)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.48-54
    • /
    • 2002
  • Since photocatalysts are activated by lights of UV wavelengths, plasma is alternatively used as a light source for a photocatalytic reactor. Light intensity generated by plasma is proportional to the surface area of catalytic material, and this, in many practical applications, is prescribed by the geometry of a plasma generator. Thus, it is crucial to increase the surface area far sufficient light intensity for photocatalytic reaction. For example, in a pack-bed type reactor, multitudes of beads are used as a substrate in order to increase the surface area. Honeycomb monolith type substrate, which has very good surface area to volume ratio, has been difficult to apply plasma as a light source due to the fact that light penetration depth through the honeycomb monolith was too short to cover sufficient area, thus resulting in poor intensity for photocatalytic reaction. In this study, nonthermal plasma generation through a photocatalytic reactor of honeycomb monolith substrate is investigated to lengthen this short penetration depth. The ceramic honeycomb monolith substrate used in this study has the same length as a three way catalyst used fur automotive applications, and it is shown that sufficient light intensity for photocatalytic reaction can also be obtained with honeycomb monolith type reactor.

선 대 평판형 플라즈마 반응기를 이용한 자계 시뮬레이션과 질소산화물제거 특성 (Simulation of Magnetic Field and Removal Characteristic of Nitrogen Oxide Using Wire-Plate Type Plasma Reactor)

  • 이현수;박재윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.407-411
    • /
    • 2003
  • The purpose of this paper is to study the removal of nitrogen oxide(NOx) using a wire-plate type plasma reactor with magnet attached for indoor air purification. In order to produce a more effective reactor, we conducted magnetic field simulations. The results of the magnetic field simulations show that NOx can be removed more effectively. The results from the magnetic field simulation show that when 7 magnets were applied to the reactor, the magnetic flux density was at its highest amount than when using 0, 3, or 5 magnets. From the data obtained by the simulation results a plasma reactor was made and thus, several experiments were conducted. The best removal efficiency was obtained with 14 W AC power to the reactor with 5 magnets.

수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발 (Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

대면적 LCD용 ICP소스에 대한 수치 해석적 분석 (A Numerical Analysis on the Development of ICP Source for Large Area LCD)

  • 이주율;이영직
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.573-576
    • /
    • 1998
  • In this paper, we analyzed electric field density and plasma condition to ICP reactor geometry structure, to generate plasma, to maintain plasma uniformity of large area LCD panel in ICP reactor also, we simulated electric field density for all kind existence current (antena and plasma current) in ICP reactor to analyze plasma antena structure

  • PDF

A Study on Off-Gas Treatment of an Air Stripping Tower Using a Plasma Reactor

  • Lim, Gye-Gyu;Yoo, Ho-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제9권E호
    • /
    • pp.382-389
    • /
    • 1993
  • An evaluation of a plasma reactor was conducted to investigate its potential as a feasible and economical off-gas control technology for an air stripping tower (AST). The plasma reactor was powered by an alternating current with frequencies up to 1000Hz. The study showed that over 90% conversion of gas-phase trichloroethylene (TCE) can be achieved. An optimum frequency for the laternating current existed for maximum power input. The optimum frequency was dependent on the reactor geometry and the primary voltage applied. for a fixed geometry, a plasma reactor has a limited capacity for flow rate. Even though it is a feasible process to control off-gases, further investigations should be conducted to develop a more economic process.

  • PDF

이종방전 중첩에 의한 방전 플라스마반응기의 효율개선의 시도 - 연면.직류코로나 방전 중첩형 반응기의 특성 - (A Trial for Improvement of Energy Efficiency of Plasma Reactor by Superposing Two Heterogeneous Discharges - Characteristics of Surface and Corona Discharge Combined Plasma Reactor -)

  • 우인성;;황명환
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.66-70
    • /
    • 2000
  • In order to cope with environmental problems caused by harmful gases emitted from various industrial sources, a new technology which employs discharge plasma formed in ordinary atmospheric pressure has been intensively investigated in many industrialized nations. Although a plenty of useful outcomes and suggestions have been made public by scientists in this field, few commercial products which effectively decompose pollutant gases have appeared as yet. This is partly because that the energy efficiency of a most effective plasma reactor has not reached a satisfactory level in comparison with those of devices using conventional technologies. In an attempt to solve the problem mentioned above, we noticed to combine heterogeneous electrical discharges. This concepts is based on that each plasma reactor has its specific spatial region in which chemical reaction are active and by electrically affected with another reactor of different type, the activated region would increase - which may lead to cutting down the energy consumption. To prove this concept experimentally, two different discharge equipments, a plane ceramic-based surface discharge electrode and a corona electrode with tungsten needle may, are selected and combined to fabricate a hybrid plasma reactor. The results are summarized as follows; (1) Ozone concentration generated in the plasma region drastically increases when the positive corona discharge is added to the surface discharge. The rate of increase of ozone depends on the frequency of the surface discharge. The negative corona, however, does not contribute to the improvement of the ozone generation. (2) NO(nitrogen monoxide) decomposition rate also improves by simultaneously applying the surface and the positive corona discharges. The effect of the corona superposition is more evident when the level of the surface discharge is moderate. (3) By adjusting the corona level, the net energy efficiency during NO decomposition improves in comparison with the simple surface discharge reactor.

  • PDF

고밀도스트리머를 이용한 $CF_{4}$ 분해특성 (The characteristic of $CF_{4}$ decomposition for High density streamer)

  • 송원섭;박재윤;정장근;김종석;김태용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.133-137
    • /
    • 2002
  • In this paper, the $CF_{4}$ decomposition rate are investigated for a simulated three plasma reactors which are metal particle reactor, spiral wire reactor and reactor with porous dielectric as applied voltage. The $CF_{4}$ decomposition rate by plasma reactor with porous dielectric had a gain of 20~25[%] over that by plasma reactor with spiral wire or metal particle electrode. The $CF_{4}$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_{4}$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. However, decomposition efficiency is more than 90% in case of the reactor with porous dielectric. we think, the reactor with porous dielectric should be much better than other reactors for $CF_{4}$ decomposition.

  • PDF

펄스 플라스마 반응기에 대한 임피던스 및 누설 인덕턴스 분석 (Analysis of Impedance and Stray Inductance for Pulsed Plasma Reactor)

  • 최영욱;이홍식;임근희;김태희;김종화;장길홍;신완호;송영훈
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권4호
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, the impedance characteristic of wire-plate pulsed plasma reactor was investigated by experiment. The experiment have carried out under the several conditions of voltage, wire length and wire-plate distance. The impedance of reactor wad decreased with increasing voltage and wire length. The nature of discharge in reactor was changed from streamer corona to spark with increasing incident energy, from which we understood the critical energy density between the two discharges. Fromthis experiment, we proposed the method for the impedance matching between pulse generator and pulsed plasma reactor. Additionally, we succeeded in the analysis ofstray inductance of 0.5MW reactor using EMTP (ElectroMagnetic Transients Program). This means that EMTP is also useful for the analysis of inevitable stray inductance of forthcoming a large scale reactor.

  • PDF