• Title/Summary/Keyword: plasma modeling

Search Result 214, Processing Time 0.042 seconds

A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field (축방향 자기장에 의한 대전류 아크 특성에 관한 연구)

  • Cho, S.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Laser Thomson Scattering Measurements and Modelling on the Electron Behavior in a Magnetic Neutral Loop Discharge Plasma

  • Sung, Youl-Moon;Kim, Hee-Je;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.107-112
    • /
    • 2001
  • Laser Thomson scattering measurements of electrom temperature and density in a neutral loop discharge (NLD) plasma were performed in order to reveal the electron behavior around the neutral loop (NL). The experimental results were examined by using a simulation model that included effects of a three dimensional electromagnetic field with spatial decay of the RF electric field, and the limitation of the spatial extent of the electron motion and collision effect. From the experiments and modeling of the electron behavior, it was found that NLD plasma posses the electron temeprature $T_{e}$ and density ne peaks around the NL is essential for the formation of plasma. Also, the optimum condition of plasma production could be simply estimated by the calculation of $U_{av}$ and $F_{0}$././.

  • PDF

Atomic and Molecular Data Research for Plasma Applications

  • Yun, Jeong-Sik;Gwon, Deuk-Cheol;Song, Mi-Yeong;Jang, Won-Seok;Hwang, Seong-Ha;Park, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.32-32
    • /
    • 2010
  • Since the characteristics of plasmas depend strongly on the interactions between plasma particles such as electron, ions, and neutrals, a well-established atomic and molecular database is needed to understand and produce various types of plasma. Thus, National Fusion Research Institute (NFRI) started to establish the plasma property DB for fusion and industrial plasma from last 2002. Here we describe our recent data evaluation activities regarding to production of atomic and molecular data that are needed for modeling plasma in fusion tokamaks and also low temperature industrial plasmas.

  • PDF

Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias (수치모델을 이용한 pulsed dc bias ICP장치의 플라즈마 특성 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.154-158
    • /
    • 2010
  • Numerical analysis is done to investigate the effects of pulse bias on the plasma processing characteristics like ion doping and ion nitriding by using fluid dynamic code with a 2D axi-symmetric model. For 10 mTorr of Ar plasma, -1 kV of pulse bias was simulated. Maximum sheath thickness was around 20 mm based on the electric potential profile. The peak electron temperature was about 20 eV, but did not affect the averaged plasma characteristics of the whole chamber. Maximum ion current density incident on the substrate was 200 $A/m^2$ at the center, but was decreased down to 1/10th at radius 100 mm, giving poor radial uniformity.

Effects of the Sheath on Determination of the Plasma Density of Microwave Probe

  • Kim, Dae-Woong;You, Shin-Jae;Na, Byung-Keun;You, Kwang-Ho;Kim, Jung-Hyung;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.181-181
    • /
    • 2012
  • The microwave probe for measuring plasma density is widely used for its advantages: First, it is not affected by the reactive gas. Second, it can measure local plasma parameters such as plasma density, plasma potential and plasma temperature. Third, it is simple and robust. A cut-off probe is the one of the most promising microwave probe. Recently, Kim et al. reveals the physics of the cut-off probe but the effect of the sheath on the determination of the plasma density is not explained. In this presentation, for taking account of sheath effects on determination of plasma density from the cut-off peak, a simplified circuit modeling and an E/M simulation are conducted. The results show that occupation ratio of sheath volume between two tips of the cut-off probe and subsequence pressure condition mainly change position of the cut-off peak with respect to plasma frequency. Magnitude of relative voltage taken on the impedance of sheath and the impedance of bulk plasma can explain this effect. Furthermore, effects of gap size, tip radius, and tip length ware revealed based on above analysis.

  • PDF

Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity

  • Yamazaki, Hiroshi;Kamiya, Yusuke
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.

Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD (Very High Frequency Multi Hollow Cathode PECVD 장치의 수치모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.331-340
    • /
    • 2010
  • 3D fluid based numerical modelling is done for a VHF multi hollow cathode array plasma enhanced chemical vapor deposition system. In order to understand the fundamental characteristics of it, Ar plasma is analyzed with a condition of 40 MHz, 100 Vrf and 1 Torr. For hole array of 6 mm diameter and 20 mm inter-hole distance, plasma is well confined within the hole at an electrode gap of 10 mm. The peak plasma density was $5{\times}10^{11}#/cm^3$ at the center of the hole. When the substrate was assumed at ground potential, electron temperature showed a peak at the vicinity of the grounded walls including the substrate and chamber walls. The reaction rate of metastable based two step ionization was 10 times higher than the direct electron impact ionization at this condition. For $H_2$, the spatial localization of discharge is harder to get than Ar due to various pathways of electron impact reactions other than ionization.