• 제목/요약/키워드: plasma membrane H-ATPase

검색결과 31건 처리시간 0.019초

바이오센서에 의한 뿌리 원형질막에서의 $H^ +-ATPase $의 활성측정 (Expression of Plasma Membrane $H^ +-ATPase $ in the Roots of Plants Under Low Temperature)

  • 천병수;정갑채;유종수
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.59-62
    • /
    • 2002
  • 본 연구에서는 특히 환경변화에 민감한 오이, 호박을 선택하여 저온 스트레스에 의한 기작 반응을 인지하는 이온 채널들의 식물에 가해지는 수송능력의 변화에 따른 능동 운송과 스트레스 감응 능력에 따른 생리학적 규명을 위해 시료 처리가 복잡하고 장시간 소요되는 종래법에서 탈피하고자 바이오센서에 의한 진속, 간단, 경제적 측정법을 도입하였다. 시료한 개를 측정하는데 걸리는 시간은 3분이 소요되며 센서법과 종래법과의 측정결과 사이에 좋은 상관치를 나타내었다.

중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용 (Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi)

  • 이상화;김창진
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

$La^{3+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성저해 (Lanthanum-induced Inhibitions of Microsomal $H^+-ATPase$ in the Roots of Tomato)

  • 조광현;김영기
    • Applied Biological Chemistry
    • /
    • 제46권2호
    • /
    • pp.84-89
    • /
    • 2003
  • $H^+-ATPase$ 활성을 조절할 수 있는 물질을 찾기 위하여 토마토 뿌리조직으로부터 마이크로솜을 분리하고 $La^{3+}$의 효과를 조사하였다. 원형질막 및 액포막에 위치하는 $H^+-ATPase$의 활성은 각각의 선택적 저해제인 vanadate와 $NO_3-$의 처리시 감소하여, $La^{3+}$이 원형질막 및 액포막 $H^+-ATPase$ 활성을 모두 저해함을 확인하였다. 원형질막과 액포막 $H^+-ATPase$ 활성을 50% 저해하는 $La^{3+}$ 농도인 Ki 값은 각각 57, $78\;{\mu}M$이었다. $La^{3+}$에 의한 저해효과는 Triton X-100을 처리한 leaky 마이크로솜에서도 얻어져, $La^{3+}$이 이온채널의 존재와 관계없이 $H^+-ATPase$의 활성을 직접적으로 저해함을 확인하였다. 한편, Lak의 활성저해 효과는 ATP 농도 증가로 감소하였고, ATP의 효과는 농도 의존적으로 나타났으며, 7 mM ATP 의해 $La^{3+}$에 의한 $H^+-ATPase$ 활성 저해가 완전히 억제되었다. 이러한 결과로부터 $La^{3+}$은 원형질막과 액포막의 $H^+-ATPase$들에 결합하여 ATP 결합친화력을 감소시킴으로써 활성을 저해하며, 뿌리조직 $H^+-ATPase$의 활성조절제로 이용이 가능함을 확인하였다.

Effect of Glucose, Its Analogs and Some Amino Acids on Pre-steady State Kinetics of ATP Hydrolysis by PM-ATPase of Pathogenic Yeast (Candida albicans)

  • Bushra, Rashid;Nikhat, Manzoor;M., Amin;Luqman A., Khan
    • Animal cells and systems
    • /
    • 제8권4호
    • /
    • pp.307-312
    • /
    • 2004
  • Fast kinetics of transient pH changes and difference spectrum formation have been investigated following mixing of ADP/ATP with partially purified plasma membrane PM-ATPase of the pathogenic yeast Candida albicans in the presence of five nutrients: glucose, glutamic acid, proline, lysine, and arginine and two analogs of glucose: 2-deoxy D-glucose and xylose. Average $H^+$- absorption to release ratio, indicative of population of ATPase undergoing complete hydrolytic cycle, was found to be 0.27 for control. This ratio varied between 0.25 (proline) to 0.36 (arginine) for all other compounds tested, except for glucose. In the presence of glucose, $H^+$- absorption to release ratio was exceptionally high (0.92). While no UV difference spectrum was observed with ADP, mixing of ATP with ATPase led to a large conformational change. Exposure to different nutrients restricted the magnitude of the conformational change; the analogs of glucose were found to be ineffective. This suppression was maximal in the case of glucose (80%); with other nutrients, the magnitude of suppression ranged from 40-50%. Rate of $H^+$- absorption, which is indicative of E~P complex dissociation, showed positive correlation with suppression of conformational change only in the case of glucose and no other nutrient/analog. Mode of interaction of glucose with plasma membrane $H^+$-ATPase thus appears to be strikingly distinct compared to that of other nutrients/analogs tested. The results obtained lead us to propose a model for explaining glucose stimulation of plasma membrane $H^+$-ATPase activity.

Phosphorylation, 14-3-3 protein and photoreceptor in blue light response of stomatal guard cells

  • Toshinori Kinoshita;Takashi Emi;Michio Doi;Shimazaki, Ken-ichiro
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.335-337
    • /
    • 2002
  • Blue light (BL) induces stomatal opening through activation of H$^{+}$ pump, which creates electrical gradient across the plasma membrane for $K^{+}$ uptake into guard cells. The pump is the plasma membrane H$^{+}$ -ATPase and is activated via phosphorylation of the C-terminus with concomitant binding of the 14-3-3 protein. The opening is initiated by the perception of BL through phototropin (phot), which are recently identified as BL receptors in stomatal guard cells. In this study, we provide the biochemical evidence for phots as BL receptors in stomatal guard cells. vfphot was phosphorylated reversibly by BL, and phosphorylation levels of vfphot increased earlier than those of the plasma membrane W-ATPase. BL-dependent phosphorylations of vfphot and H$^{+}$-ATPase showed similar fluence dependency. Staurosporin, an inhibitor of serine/threonine protein kinase, and diphenyleneiodonium chloride (DPI), an inhibitor of flavoprotein, inhibited BL-dependent phosphorylations of vfphot and H$^{+}$ -ATPase. These results indicate that vfphot acts as a BL-receptor mediating stomatal opening.l opening.

  • PDF

$Hg^{2+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$의 가역적 저해 ([$Hg^{2+} $-induced Reversible Inhibitions of Microsomal $H^+-ATPase$ Prepared from Tomato Roots)

  • 신대섭;조광현;김영기
    • Applied Biological Chemistry
    • /
    • 제42권4호
    • /
    • pp.298-303
    • /
    • 1999
  • 토마토 뿌리조직의 마이크로솜 ATPpase활성에 대한 중금속의 효과를 조사하기 위하여 뿌리조직으로부터 마이크로솜을 분리하였고, enzyme-coupled assay를 이용하여 마이크로솜 이온펌프(ATPase)의 활성을 측정하였다. 여러 가지 중금속 이온들 중 $Hg^{2+}$은 마이크로솜 ATPpase 활성을 농도 의존적으로 저해하였으며, $Gd^{3+}$$Fe^{3+}$, $La^{3+}$, $Zn^{2+}$, $Pb^{2+}$ 등은 마이크로솜 ATPpase의 활성을 저해하면서 동시에 assay에 사용된 효소를 저해하였다. 그러나, $Cs^+$$Ba^{2+}$은 마이크로솜 ATPpase 활성에 영향을 미치지 않았다. $Hg^{2+}$은 원형질막과 액포막에 위치하는 $H^+-ATPase$들의 활성을 $10\;{\mu}M$ 이상의 농도에서 현저히 저해하였고, 1 mM 이상의 농도에서 완전히 저해하였으며, 두 효소들에 대한 활성저해의 Ki 값은 각각 $80\;{\mu}M$, $58\;{\mu}M$로 나타났다. $Hg^{2+}$에 의해 저해된 ATPpase의 활성은 DTT의 농도를 증가시킴에 따라 회복되어, $Hg^{2+}$에 의한 ATPpase 활성저해는 가역적임을 확인하였다. 이러한 결과들은 $Hg^{2+}$이 원형질막과 액포막에 위치한 $H^+-ATPase$들을 비선택적이고 가역적으로 저해함을 보여준다.

  • PDF

산-생장설에 대한 최근 연구 동향 (Recent research progress on acid-growth theory)

  • 이상호
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.405-410
    • /
    • 2016
  • Auxins are essential in plant growth and development. The auxin-stimulated elongation of plant cells has been explained by the "acid-growth theory", which was proposed forty years ago. According to this theory, the auxin activates plasma membrane $H^+-ATPase$ to induce proton extrusion into the apoplast, promoting cell expansion through the activation of cell wall-loosening proteins such as expansins. Even though accepted as the classical theory of auxin-induced cell growth for decades, the major signaling components comprising this model were unknown, until publication of recent reports. The major gap in the acid growth theory is the signaling mechanism by which auxin activates the plasma membrane $H^+-ATPase$. Recent genetic, molecular, and biochemical approaches reveal that several auxin-related molecules, such as TIR1/AFB AUX/IAA coreceptors and SMALL AUXIN UP RNA (SAUR), serve as important components of the acid-growth model, phosphorylating and subsequently activating the plasma membrane $H^+-ATPase$. These researches reestablish the four-decade-old theory by providing us the detailed signaling mechanism of auxininduced cell growth. In this review, we discuss the recent research progress in auxin-induced cell elongation, and a set of possible future works based on the reestablished acid-growth model.

Blue light signaling in stomatal guard cells

  • Shimazaki, Ken-ichiro;Michio Doi;Toshinori Kinoshita
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.86-89
    • /
    • 2002
  • Blue light activates proton pump, and creates electrical gradient across the plasma membrane and drives $K^{+}$ uptake in stomatal guard cells. In this presentation, we provide evidence for regulatory mechanisms of the pump and the identification of blue light receptor. The pump is shown to be the plasma membrane H$^{+}$- ATPase and is activated through phosphorylation of the C-terminus. Phosphorylation occurred and 14-3-3 protein bound to the phosphorylation site. The binding of 14-3-3 protein was required for the H$^{+}$-ATPase activation. We also found that phot1 phot2 double mutant does not respond to blue light but other mutants respond to blue light by stomatal opening. However, all these mutants are capable of stomatal opening in the presence of fusicoccin, an activator of the H$^{+}$-ATPase. These results suggest that both photl and phot2 act as blue light receptors in guard cells.d cells.

  • PDF

Antifungal Activity of Medium-Chain ($C_{6}-C_{13}$) Alkenals against, and Their Inhibitory Effect on the Plasma Membrane $H^{+}$-ATPase of Saccharomyces cerevisiae

  • Lee, Jae-Ran;Lee, Sang-Hwa;Kubo, Isao;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.197-202
    • /
    • 1998
  • Aliphatic alkenals having 6 to 13 carbons were evaluated for antifungal activity against Saccharomyces cerevisiae. The activity was gradually increased with chain length, e.g., (E)-2-decenal and (E)-2-undecenal exhibited maximum potency, while (E)-2-dodecenal and (E)-2-tridecenal were completely inactive. Alkenals showed increasing inhibitory activity with chain length, as in the case of antifungal activity, towards glucose-induced medium acidification by the plasma membrane $H^+$-ATPase of S. cerevisiae. The group including (E)-2-nonenal, (E)-2-decenal, and (E)-2-undecenal exhibited maximum potency, but the potency of (E)-2-dodecenal and (E)-2-tridecenal demonstrated a sudden drop with respect to the former group. (E)-2-Nonenal revealed dose-responsive inhibition to the medium acidification and inhibited over 90% at a concentration of 1.25 mM ($175.3{\mu}g$/ml). In contrast to (E)-2-undecenal whose inhibitory efficiency increased with incubation time, inhibition by (E)-2-dodecenal was reversed with time. Of the tested alkenals, (E)-2-heptenal and (E)-2-octenal most highly inhibited ATP hydrolytic activity by the plasma membrane $H^+$ ATPase, while (E)-2-heptenal at 10 mM ($1121.8{\mu}g$/ml) showed an inhibitory efficacy of 93.2%.

  • PDF

토마토 뿌리조직 $H^+-ATPase$ 활성에 미치는 Thapsigargin의 저해효과 (Inhibitory Effect of Thapsigargin on the Activities of $H^+-ATPases$ in Tomato Roots)

  • 조광현;김영기
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.212-216
    • /
    • 2005
  • Thapsigargin은 동물조직에서 ER/SR-type $Ca^{2+}-ATPase$의 선택적 저해제로서, 토마토 뿌리조직으로부터 분리한 마이크로솜에서 ATPase의 특성을 조사하기 위하여 사용되었다. Thapsigargin은 마이크로솜 ATPase 활성을 농도의존적으로 저해하였으며, $10\;{\mu}M$ 농도에서 총활성의 약 30%를 저해하였다. 이것은 뿌리조직에서 $Ca^{2+}-ATPase$의 활성이 매우 낮다는 것을 고려할 때, thapsigargin이 뿌리조직의 주된 ATPase 활성인 원형질막 및 액포막의 $H^+-ATPase$ 활성을 저해할 가능성을 보인다. Thapsigargin의 효과는 ${NO_3}^-$를 사용하여 액포막 $H^+-ATPase$ 활성을 저해하였을 때 현저하게 감소하였다. 그러나, thapsigargin의 효과는 원형질막의 $H^+-ATPase$ 활성에는 영향을 미치지 않아, thapsigargin이 토마토 뿌리조직에서 액포막 $H^+-ATPase$를 선택적으로 저해함을 보여준다.