• 제목/요약/키워드: plasma membrane ATPase

검색결과 59건 처리시간 0.027초

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF

알루미늄에 의한 녹두 뿌리의 생장 억제와 원형질막 $H^+-flux$의 손상 (Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+-flux$ in Mung Bean)

  • 안성주;김유선;박원;구양규;민경수;황태익
    • 한국작물학회지
    • /
    • 제52권2호
    • /
    • pp.213-219
    • /
    • 2007
  • 본 연구는 알루미늄 스트레스가 녹두에 미치는 영향을 보기 위해 뿌리의 생장, 알루미늄 함량, 뿌리 표면의 pH 변화, 원형질막의 $H^+-ATPase$ 활성과 단백질 양의 변화를 조사하여 분석하였다. 1. 처리된 알루미늄의 농도는 10, 25, 50, $100{\mu}M$이었으며, 알루미늄에 의한 뿌리생장의 억제는 $25{\mu}M$ 이상의 농도 처리구에서 12시간부터 현저히 나타났고, 50과 $100{\mu}M$ 처리구에서는 뿌리의 생장이 거의 중단되었다. 2. 0.2% Hematoxlin으로 염색 시 알루미늄이 처리된 근단부에서 주로 염색되었으며, $50{\mu}M$ 농도로 처리된 뿌리의 경우 12시간째보다는 24시간째에 근단부 전체가 염색되어 그 피해가 심각함을 보여 주었다. 또 근단 부위가 대조구와 비교하여 어두운 갈색을 나타내고, 표면이 가로 쪽으로 갈라졌다. 3. 처리 농도별 근단부(1 cm)와 근단부를 제외한 부위의 뿌리로 나누어 24시간 처리를 한 후 알루미늄 함량을 측정한 결과, $10{\mu}M$ 처리구에서는 차이가 없었다. 그러나 알루미늄 처리 농도가 높을수록 즉, $25{\mu}M$ 이상 알루미늄 처리구에서는 근단부에서 2.5배 이상 높았다. 4. pH 지시약과 agarose plate technique를 이용하여 뿌리표면의 $H^+-flux$의 차이를 본 결과 녹두의 근단부 표면의 알카리화가 대조구에서는 12시간 정도부터 노란색(pH 4.5)에서 보라색(pH 6.0 이상)으로 변하는 것을 관찰하였으나 알루미늄 처리구에서는 색깔의 변화를 볼 수 없었다. 5. 24시간 동안 $50{\mu}M$ 알루미늄을 처리한 뿌리 원형질막 $H^+-ATPase$ 활성은 대조구에 비해 56%가 억제 되었다. $H^+-ATPase$ 단백질의 발현을 조사한 Western blotting 결과는 효소 활성의 감소와 유사하게 알루미늄이 처리된 뿌리에서 현저하게 줄어들었음을 확인할 수 있었다.

PLANT CELL WALL WITH FUNGAL SIGNALS MAY DETERMINE HOST-PARASITE SPECIFICITY

  • Shiraishi, T.;Kiba, A.;Inata, A.;Sugimoto, M.;Toyoda, K.;Ichinose, Y.;Yamada, T.
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.10-18
    • /
    • 1998
  • For improvement of plants in disease resistance, it is most important to elucidate the mechanism to perceive and respond to the signal molecules of invaders. A model system with pea and its pathogen, Mycosphaerella pinodes, showed that the fungal elicitor induced defense responses in all plant species tested but that the suppressor of the fungus blocked or delayed the expression of defense responses and induced accessibility only in the host plant. In the world, many researchers believe that the pathogens` signals are recognized only on the receptors in the plasma membranes. Though we found that the ATPase and polyphosphoinositide metabolism in isolated plasma membranes responded to these fungal signals, we failed to detect specific actions of the suppressor in vitro on these plasma membrane functions. Recently, we found that ATPase (NTPases) and superoxide generating system in isolated cell wall were regulated by these fungal signals even in vitro, especially, by the suppressor in a strictly species-specific manner and also that the cell wall alone prepared an original defense system. The effects of both fungal signals on the isolated cell wall functions in vitro coincide perfectly with those on defense responses in vivo. In this treatise, we discuss the key role of the cell wall, which is plant-specific and the most exterior organelle, in determining host-parasite specificity and molecular target for improvement of plants.

  • PDF

Effects of green tea or $Sasa$ $quelpaertensis$ bamboo leaves on plasma and liver lipids, erythrocyte Na efflux, and platelet aggregation in ovariectomized rats

  • Ryou, Sung-Hee;Kang, Min-Sook;Kim, Kyu-Il;Kang, Young-Hee;Kang, Jung-Sook
    • Nutrition Research and Practice
    • /
    • 제6권2호
    • /
    • pp.106-112
    • /
    • 2012
  • This study was conducted to investigate the effects of $Sasa$ $quelpaertensis$ bamboo and green tea on plasma and liver lipids, platelet aggregation, and erythrocyte membrane Na channels in ovariectomized (OVX) rats. Thirty female rats were OVX, and ten female rats were sham-operated at the age of 6 weeks. The rats were divided into four groups at the age of 10 weeks and fed the experiment diets: sham-control, OVX-control, OVX-bamboo leaves (10%), or OVX-green tea leaves (10%) for four weeks. Final body weight increased significantly in the OVX groups compared with that in the sham-control, whereas body weight in the OVX-green tea group decreased significantly compared with that in the OVX-control ($P$ < 0.01). High density lipoprotein (HDL)-cholesterol level decreased in all OVX groups compared with that in the sham-control rats ($P$ < 0.05) but without a difference in plasma total cholesterol. Plasma triglycerides in the OVX-green tea group were significantly lower than those in the sham-control or OVX-control group ($P$ < 0.05). Liver triglycerides increased significantly in the OVX-control compared with those in the sham-control ($P$ < 0.01) but decreased significantly in the OVX-green tea group compared with those in the OVX-control or OVX-bamboo group ($P$ < 0.01). Platelet aggregation in both maximum and initial slope tended to be lower in all OVX rats compared with that in the sham-control rats but was not significantly different. Na-K ATPase tended to increase and Na-K cotransport tended to decrease following ovariectomy. Na-K ATPase decreased significantly in the OVX-green tea group compared with that in the OVX-control group ($P$ < 0.01), and Na-K cotransport increased significantly in the OVX-bamboo and OVX-green tea groups compared with that in the OVX-control ($P$ < 0.05). Femoral bone mineral density tended to be lower in OVX rats than that in the sham-control, whereas the green tea and bamboo leaves groups recovered bone density to some extent. The results show that ovariectomy caused an increase in body weight and liver triglycerides, and that green tea was effective for lowering body weight and triglycerides in OVX rats. Ovariectomy induced an increase in Na efflux via Na-K ATPase and a decrease in Na efflux via Na-K cotransport. Furthermore, consumption of green tea and bamboo leaves affected Na efflux channels, controlling electrolyte and body water balance.

이질아메바(Entamoeba histolytica)의 미세구조 및 효소활성에 관한 전자현미경적 연구 (Electron-microscopic studies on fine structure and enzyme activity in the axenic and conventional strains of Entamoeba histolytica)

  • 용태순;정평림;이근태
    • Parasites, Hosts and Diseases
    • /
    • 제23권2호
    • /
    • pp.269-284
    • /
    • 1985
  • The metabolism of Entamoeba histolytica would be affected by various environmental factors, and alteration of the environment was known to afEect the fine structure of 5. histolytica. The present study was designed electronmicroscopically to investigate the ultrastructure and enzyme activities in the aEonic and conventional strains of 5. histolytica. The trophozoites of axenically cultivated HK-9 strain and conventional YS-27 and YS-49 strains of 5. histolytica were collected and liKed with 4% paraformaldehyde/0.1M cacodylate buffier(pH 74), After washing them by centrifugation, 1% warm agar was added in the sediment. Solidified agar with the trophozoites was cut into $lmm^3$ cubes, and incubated in the various substrates to observe enzyme activities. Then, the specimen was post-fixed with 3% glutaraldehyde/0.1M cacodylate buffer (PH 7.4) and 1% osmium tetroBide/0.1M cacodylate buffier (pH 7.4) , dehydrated in ascending ethanol series and embedded in epoxy resin. These were sectioned on an ultramicrotome and observed with a transmission electronmicroscope. The procedures for the observation of the fine structure were same as the above, except for the incubation in the substrate. The sections were stained with uranyl acetate and lead citrate. For the observation of the surface of the amoebae, scanning-electronmicroscopy was carried out. The results obtained in the present study are summarized as follows: 1. The fuzzy coat around double-layered plasma membrane of 5. histolytica was more irregularly and densely distributed in the conventional strains (YS-27, YS-49 strains) than in the axonic strain (HK-9 strain). 2. The endosomes, button bodies and chromatin material were surrounded by a double-layered nuclear membrane having scattered nuclear fores. The paranuclear body, mono- or double-layered vacuoles, vacuolar membrane whorls, rosette-like cylindrical bodies, aggregation of cylindrical bodies and helical bodies were found in the cytoplasm of the amoebae. Helical bodies and glycogen granules were generally abundant, while a few smooth endoplasmic reticula were observed in the cytoplasm. 3. Alkaline phosphatase activity was mainly demonstrated in the plasma membrane, limiting membranes of vacuoles and smooth endoplasmic reticula. ATPase activity was observed in the nucleus, limiting membranes of vacuoles and vacuolar membrane whorls. 4. Acid phosphatase activity was commonly demonstrated in the limiting membranes an contents of vacuoles, Iysosome-like organelles, plasma membrane and the button bodies in the nucleus. The activity was more weakly demonstrated in the HK-9 strain than in the other conventional strains of 5. histolytica. No peroBidase activity was observed in the amoeba strains employed in the present study. 5. With a scanning electron-microscope, no distinct structural differences were observed between the amoeba strains. All the trophozoite forms of the amoebae showed crater-like depressions and rugged features on the outer surface.

  • PDF

Effects of Cofilin and PMA on $NA^+-K^+$ Pump Current in Guinea- pig Ventricular Myocytes

  • Lee, So-Young;Jaehoon Jung;Lee, Chin O.;Lee, Kyunglim
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.45-45
    • /
    • 2001
  • The Na$^{+}$-K$^{+}$ pump, a plasma membrane Na$^{+}$-K$^{+}$ ATPase is plays a key role in the regulation and maintenance of Na$^{+}$ and $K^{+}$ ion concentration gradients across cell membranes. This enzyme pumps three Na$^{+}$ out of and two $K^{+}$ into the cell against their electrochemical gradient by utilizing the energy derived from ATP. Therefore, the Na$^{+}$-K$^{+}$ pump generates a net outward electrical current.(omitted)ted)

  • PDF

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Direct Evidence of Intracellular Alkalinization in Saccharomyces cerevisiae KNU5377 Exposed to Inorganic Sulfuric Acid

  • Yun, Hae-Sun;Paik, Sang-Kyoo;Kim, Il-Sup;Jin, Ing-Nyol;Sohn, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.243-249
    • /
    • 2004
  • The toxicity of inorganic sulfuric acid as a stressor was characterized in Saccharomyces cerevisiae KNU5377. In this work, we examined physiological responses to low extracellular pH $(pH_{ex})$ caused by inorganic $H_2SO_4$, which could not affect cell growth after pH was adjusted to an optimum with Trizma base. The major toxicity of sulfuric and was found to be reduction of environmental pH, resulting in stimulation of plasma membrane ${H^+}-ATPase$, which in turn contributed to intracellular alkalinization. Using a pH-dependent fluorescence probe, 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate (carboxy SNARF-1 AM acetate), to determine $pH_{in}$, we found that color was dependent on the changes of intracellular pH which coincided with calculated $pH_{in}$ of alkalinization up to approximately pH 7.3. This alkalinization did not seem to affect survival of these cells exposed to 30 mM sulfuric acid, which lowered the $pH_{ex}$ of the glucose containing growth media up to approximately pH 3.0; however, the cells could grow only up to 70% of the maximum growth in the same media, when 30 mM sulfuric acid was added.