• Title/Summary/Keyword: plasma ion nitriding

Search Result 38, Processing Time 0.017 seconds

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

The Characteristics of the Oxide Layer Produced on the Plasma Nitrocarburized Compound Layer of SCM435 Steel by Plasma Oxidation (플라즈마 산질화처리된 SCM435강의 표면경화층의 미세조직과 특성)

  • Jeon Eun-Kab;Park Ik-Min;Lee Insup
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.265-269
    • /
    • 2004
  • Plasma nitrocarburising and post oxidation were performed on SCM435 steel by a pulsed plasma ion nitriding system. Plasma oxidation resulted in the formation of a very thin ferritic oxide layer 1-2 $\mu\textrm{m}$ thick on top of a 15~25 $\mu\textrm{m}$ $\varepsilon$-F $e_{2-3}$(N,C) nitrocarburized compound layer. The growth rate of oxide layer increased with the treatment temperature and time. However, the oxide layer was easily spalled from the compound layer either for both oxidation temperatures above $450^{\circ}C$, or for oxidation time more than 2 hrs at oxidation temperature $400^{\circ}C$. It was confirmed that the relative amount of $Fe_2$$O_3$, compared with $e_3$$O_4$, increased rapidly with the oxidation temperature. The amounts of ${\gamma}$'-$Fe_4$(N,C) and $\theta$-$Fe_3$C, generated from dissociation from $\varepsilon$-$Fe_{2-3}$ /(N,C) phase during $O_2$ plasma sputtering, were also increased with the oxidation temperature.e.

A experimental study about plasma ion treatment to improve hardness of electro-polished surface (전해연마면의 표면경도 향상을 위한 플라즈마 이온질화 처리법에 관한 실험적 연구)

  • Kim, Jin-Beom;Hong, Pil-Gi;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • The size and prospects of the domestic semiconductor equipment market are increasing every year. In the case of various parts used inside semiconductor equipments, high durability such as high strength and abrasion resistance is demanded. Particularly, the gases used in semiconductor production processes are toxic. In order to prevent such toxic gas leakage, a precision processing technique and a surface treatment technique for preventing corrosion are required. Electro-polishing is an electro-chemical method of polishing a metal surface to make it smooth and polished. Electro-polishing is mainly used in the finishing process of metal surface. Unlike mechanical polishing, electro-polishing is used in many fields, such as fine chemical etching equipment, since no damaged layer or burr, fine polishing groove and particles are generated. However, in order to withstand the gas used in the semiconductor equipment, the parts must have high corrosion resistance. However, the surface hardness generally become lowered through electro-polishing. Therefore, in this study, surface hardness were experimentally observed before and after electro-polishing. Then, a method of improving hardness by preparing a nitrided layer by plasma ion nitriding treatment.

PLASMA-SULFNITRIDING USING HOLLOW CATHODE DISCHARGE

  • Urao, Ryoichi;Hong, Sung-pill
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.443-448
    • /
    • 1996
  • In order to plasma-sulfnitride by combining ion-nitriding of a steel and sputtering of MoS$_2$, chromium-molybdenum steel was plasma-sulfritrided using hollow cathode discharge with parallel electrodes which are a main of the steel and a subsidiary cathode of $MoS_2$. The treatment was carried out at 823K for 10.8ks under 665Pa in a 30% $N_2$-70% $H_2$ gas atmosphere. Plasma-sulfnitriding layers formed of the steel were characterized with EDX, XRD, micrographic structure observation and hardness measurement. A compound layer of 8-15$\mu\textrm{m}$ and nitrogen diffusion layer of about 400$\mu\textrm{m}$ were formed on the surface of plasma-sulfnitrided steel. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2_3N$ and $\gamma$'-$Fe_4N$ formed under the FeS. The thickness of compound layer and surface hardness were different with the gaps between main and subsidiary cathodes even in the same sulfnitriding temperature. The surface hardnesses after plasma-sulfnitriding were distributed from 640 to 830Hv. The surface hardness was higher in the plasma-sulfnitriding than the usual sulfnitriding in molten salt. This may be due to Mo in sulfnitriding layer.

  • PDF

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

REACTION STEPS OF A FORMATION OF THE BLACK LAYER BEIWEEN IRON NTIRIDE AND TiN COATING

  • Baek, W.S.;Kwon, S.C.;Lee, J.Y.;Rha, J.J.;Lee, S.R.;Kim, K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.312-316
    • /
    • 1999
  • The interfacial structure of duplex treated AISI 4140 consisting of iron nitride and TiN layer was characterized by optical microscope, SEM and XRD. A black layer was formed from the decomposition of iron nitride during Ti ion bombardment. The black layer was characterized as an a-Fe phase transformed from the iron nitride by XRD. In order to identify the formation mechanism of the black layer, a thermal analysis of iron nitride undertaken by DSC method. As an iron nitride was mostly consisted of ${\gamma}$'-Fe$_4$N and $\varepsilon$-$Fe_3$N phase after plasma nitriding, in this study, a ${\gamma}$'$-Fe_4$N and $\varepsilon$-$Fe_3$N powders were separately prepared by the different processing conditions of gas nitriding of iron powder in the fluidized bed. From the DSC thermal analysis, the phase transformation of ${\gamma}$'$-Fe_4$N, $\varepsilon$-$Fe_3$N was followed the path of transformation; $ \Upsilon{'}-Fe_4$Nlongrightarrow${\gamma}$-Felongrightarrowa-Fe and of $\varepsilon$-$Fe_3$Nlongrightarrow$\varepsilon$-$Fe_{2.5}$ /N+${\gamma}$'$-Fe_4$Nlongrightarrow${\gamma}$'-Fe$_4$Nlongrightarrow${\gamma}$longrightarrowFelongrightarrowalongrightarrowFe, respectively. It explains the reason why the $\varepsilon$ $-Fe_3$N phase disappeared in the first time and then ${\gamma}$'-Fe$_4$N in the formation of the black layer in the duplex coating.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF