• 제목/요약/키워드: plasma enhanced chemical vapour deposition

검색결과 17건 처리시간 0.024초

OLED passivation에 적용하기 위한 PECVD $Al_2O_3$ 박막의 물리적 특성

  • 윤재경;권오관;윤원민;신훈규;박찬언
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.207-207
    • /
    • 2009
  • In this work, we report the physical properties of amorphous $Al_2O_3$ thin films by plasma-enhanced chemical vapour deposition (PECVD) using trimethyl-aluminium (TMA) as the Al precursor at low temperatures. The thin films were deposited on Si substrates. The composition and the bonding structure of the amorphous $Al_2O_3$ films were studied using Fourier transform infrared spectroscopy (FT-IR), Ellipsometer and UV-visible Spectrophotometer and MOCON.

  • PDF

A Robust Process for the Fabrication of Field Emission Backlights

  • Marquardt, B.;Cojucaru, C.S.;Xavier, S.;Legagneux, P.;Pribat, D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1606-1609
    • /
    • 2008
  • In this paper, we present a novel process for the realization of large area, low cost field emission cathodes. The process makes use of alumina substrates, which are anodically oxidized in order to yield porous structures capable of hosting metal catalyst nanoparticles. By carefully controlling the final stage of the anodisation as well as the electrodeposition conditions, it is possible to fine tune the density of such catalysts in the range of $10^8-10^9/cm^2$. The catalytic growth of CNTs is subsequently performed at low temperature (${\sim}\;600^{\circ}C$ or below, thanks to the use of $H_2O$), using plasma enhanced chemical vapour deposition. There is no lithography need to make the cathode and current densities of ${\sim}\;1mA/cm^2$ are easily obtained.

  • PDF

태양전지를 위한 다양한 표면 패시베이션(passivation) 막들의 연구 (Investigation of varied suface passivation layers for solar cells)

  • 이지연;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.90-93
    • /
    • 2004
  • In this work, we have used different techniques for the surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layer have been investigated both on the phosphorus non-diffused p-type FZ silicon and on phosphorus diffused emitter of 100 ${\Omega}/Sq$ and 40 ${\Omega}/Sq$. In the single layer, silicon dioxide $(SiO_2)$ passivates good on the emitter while silicon nitride (SiN) passivates better than on the non-diffused surface. In the double layers, CTO/SiN1 passivates very well both on non-diffused surface on the emitter. However, RTO/SiN1 and RTO/SiN2 stacks are more suitable for surface passivation in solar cells caused by a relatively good passivation qualities and the low optical reflection. Applying these stacks in solar cells we achieved 18.5 % and 18.8 % on 0.5 ${\Omega}$ cm FZ-Si with planar and textured front surface, respectively. The excellent open circuit voltage $(V_{oc})$ of 675.6 mV is obtained the planar cell with RTO/SiN stack.

  • PDF

PECVD에 의하여 제조된 Phosphorus-Doped ${\mu}c$-Si:H 박막의 특성 (Properties of Phosphorus Doped ${\mu}c$-Si:H Thin Films Prepared by PECVD)

  • 이정노;문대규;안병태;임호빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 1992
  • Phosphorus doped hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin films were deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition) method using 10.2% $SiH_4$ gas (diluted in Ar) and 308ppm $PH_3$ gas (diluted in Ar). The structural, optical and electrical properties of the films were investigated as a function of substrate temperature(15 to $400^{\circ}C$) and RF power(10 to 120W). The thin film deposited by varing substrate temperature had columnar structure and microcrystalline phase. The volume fraction of microcrystalline phase in the films deposited at RF power of 80W, increased with increasing substrate temperature up to $200^{\circ}C$, and then decreased with further increasing substrate temperature. Volume fraction of microcrystalline phase increased monotonously with increasing RF power at substrate temperature of $250^{\circ}C$. With increasing volume fraction of microcrystalline, electrical resistivity of films decreased to 0.274 ${\Omega}cm$.

  • PDF

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

삼중접합 실리콘 박막 태양전지 고효율화를 위한 a-$SiO_x$ 상부전지 특성 연구

  • 이지은;조준식;박상현;윤경훈;송진수;김동환;이정철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.63.2-63.2
    • /
    • 2010
  • 삼중접합 태양전지에 상부전지로 이용되는 a-SiO:H 태양전지는 PECVD(Plasma Enhanced Chemical Vapour Deposition)을 이용하여 증착하였다. i a-SiO:H는 $CO_2/SiH_4$ 비율을 변화하여 밴드갭을 조절하였다. $CO_2/SiH_4$가 0에서 0.43으로 증가 할수록 밴드갭이 1.74 eV에서 1.94 eV로 증가하는 경향을 보였다. 이는 FTIR에서 나타난 결과인 Si-O-Si 결합의 증가 때문인 것으로 판단한다. 그에 반해서 광 전도도는 감소하는 경향을 보였다.그러나 암전도도와 광전도도의 비율인 광민감도는 $10^5$에서 $10^4$의 값으로 비정질 태양전지에 적용가능한 값을 보였다. 이러한 박막 특성을 가진 i a-SiO:H를 이용하여 비정질 실리콘 태양전지를 제작한 결과 $CO_2/SiH_4$의 비율이 증가함에 따라 태양전지의 $V_{oc}$가 0.8 V에서 0.5 V로 현저하게 감소하였고, $J_{sc}$와 FF 역시 11 $mA/cm^2$에서 4 $mA/cm^2$, 69%에서 50%로 감소하였다. 단위박막 결함을 측정하는 CPM(Constant Photocurrent Method)을 이용하여 i a-SiO:H 내부에 $10^{16}cm^{-3}$ 정도의 내부 결함을 관찰하였고 이는 태양전지의 특성 감소와 관련이 있는 것으로 판단한다.

  • PDF

RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구 (Cost-effective surface passication layers by RTP and PECVD)

  • 이지연;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF